• Title/Summary/Keyword: $Ta_3N_5$

Search Result 233, Processing Time 0.035 seconds

A STUDY ON THE SOFT MAGNETIC PROPERRTIES OF Fe-Ta-(N,C) NANOCRYSTALLINE THIN FILMS

  • Shin, Dong-Hoon;Ahn, Dong-Hoon;Kim, Hyoung-June;Nam, Seung-Eui
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.601-605
    • /
    • 1995
  • Magnetic properties of FeTaN and FeTaC films deposited by DC magnetron reactive sputter were investigated, and correlated with their microstructures. The optimum magnetic properties of Hc : 0.25 Oe, Bs : 14.5 kG, and ${\mu}'$ : 4000 (5MHz) are observed in the $Fe_{78.8}Ta_{8.5}N_{12.7}$ film, and Hc : 0.25 Oe, Bs : 14.5 kG, and ${\mu}'$ : 2700 (5MHz) in the $Fe_{75.6}Ta_{8.1}C_{16.3}$ film. In both FeTaN and FeTaC films with minimum grain size show the best soft magnetic properties. Thermal stability of the soft magnetic properties of FeTaN is found to be higher than FeTaC for similar compositons. TaN and TaC particles form to retard the growth of $\alpha$-Fe grains. TaN particles in FeTaN show higher efficiency in retarding the grain growth during heat treatments resulting the higher thermal stability, compared to TaC particles in FeTaC films.

  • PDF

The Magnetic Properties and Microstrostrures for FeMX(M=Mo, Ta, X=N, C) Films. (FeMX(M=Mo, Ta, X=N, C) 박막의 자기 특성 및 미세구조 변화)

  • Shin, D.H.;Choi, W.;Kim, H.J.;Nam, S.Y.;Ahn, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.874-879
    • /
    • 1995
  • Magnetic properties of FeMoN, FeMoTaN, FeTaN and FeTaC films deposited by DC magnetron reactive sputter were investigated, and correlated with their microstructure. FeMoN films were not showen the soft magnetic prop¬erties, because of generated $Fe_{2}Mo$, $Fe_{3-2}N$ and $Fe_{4}N$ phases. Ta added films, however, effectivly retarded the $\alpha$-Fe grain growth and suppressed the generation of Fe nitrides or carbides during heat treatement. The soft magnetic properties of $B_{s}:15\;kG,\;H_{e}:0.25\;Oe,\;\mu':4000(at\;5\;MHz),\;and\;B_s:14.5\;kG,\;He:0.25\;Oe,\;\mu':2700(5MHz)$ were observed in $Fe_{78.8} Ta_{8.5}N_{12.7}\;and\;Fe{75.6}Ta_{8.1}C_{16.3}$ films, respectively.

  • PDF

Electrical Conductivity Modulation in TaNx Films Grown by Plasma Enhanced Atomic Layer Deposition (플라즈마 강화 원자층 증착법에 의한 TaNx 박막의 전기 전도도 조절)

  • Ryu, Sung Yeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.241-246
    • /
    • 2018
  • $TaN_x$ film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using $NH_3$ as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using $N_2+H_2$ mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown $TaN_x$ film with $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. For a comparison, reactive sputter-grown $TaN_x$ film with $N_2$ is also studied. The results reveal that ALD-grown $TaN_x$ films with $NH_3$ and $H_2$ include a metallic Ta-N bond, which results in the film's higher conductivity. Meanwhile, ALD-grown $TaN_x$ film with a $N_2+H_2$ mixed gas or sputtergrown $TaN_x$ film with $N_2$ gas mainly contains a semiconducting $Ta_3N_5$ bond. Such a different portion of Ta-N and $Ta_3N_5$ bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.

Soft Magnetic Properties of FeTaNC Nanocrystalline Thin Films (FeTaNC 초미세결정박막의 반응가스 분압에 따른 자기특성 변화)

  • 고태혁;신동훈;김형준;남승의;안동훈
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.3
    • /
    • pp.151-157
    • /
    • 1996
  • Magnetic properties and microstructures of FeTaNC thin films, which were deposited by magnetron reactive sputtering rrethod, were investigated as a function of $CH_{4}$ and $N_{2}$ gas partial pressures. Magnetic properties of FeTaNC films depended on total reactive gas pressure as well as $CH_{4}/N_{2}$ pressure ratios. For reactive gas partial pressures of 5~10 %, optimum magnetic properties were observed in the FeTaNC films with proper $CH_{4}/N_{2}$ ratio. On the other hand, at 15% of gas partial pressure, FeTaN and FeTaC films showed superior properties to FeTaNC films. Above 15%, the magnetic properties of films rapidly degraded due to an excess incorporation of C and/or N atoms. Excellent soft magnetic properties of 17 kG of Bs, 0.3 Oe of He, and 4000 of $\mu'$(at 5 MHz) were obtained in the FeTaNC films. High permeabilities of FeTaNC films could be explained by the Fe lattice distortion caused by N atoms, hence reduction of magnetic anisotopy. While precipitated TaN and TaC particles effectively supress the growth of $\alpha-Fe$ grains leading to a good soft magentic properties, FeN and FeC phases such as $Fe_3N$, $Fe_4N$, FexC have detrimental effects.

  • PDF

SOFT MAGNETIC PROPERTIES OF FeTaNC NANOCRYSTALLINE FILMS

  • Koh, Tae-Hyuk;Shin, Dong-Hoon;Choi, Woon;Ahn, Dong-Hoon;Nam, Seoung-Eui;Kim, Hyoung-June
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.393-398
    • /
    • 1996
  • Soft magnetic properties and microstructural evolution of FeTaNC films were investigated, and compared with FeTaN and FeTaC films. Effects of substrate species (glass vs. $CaTiO_3$) on the magnetic properties were also investigated. Co-addition of N and C significantly enhance the grain refinments and magnetism, compared with N or C addition only. Good soft magnetic characteristics of coercivity of 0.17 Oe, permeability of 4000 (5MHz), and saturation flux density of 17 kG can be obtained in the FeTaNC in the relatively wide process windows. While these values appears to be similar to those of FeTaN on glass substrate, most distinctive difference between FeTaNC and FeTaN(or C) is in the effects of substrate. Whereas FeTaNC films show good magnetic characteristics for both glass and $CaTiO_3$ substrates, FeTaN(or C) films show significant degradation on the $CaTiO_3$ substrate.

  • PDF

Characteristics of TaN Film as to Cu Barrier by PAALD Method (PAALD 방법을 이용한 TaN 박막의 구리확산방지막 특성)

  • 부성은;정우철;배남진;권용범;박세종;이정희
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.5-8
    • /
    • 2003
  • In this study, as Cu diffusion barrier, tantalum nitrides were successfully deposited on Si(100) substrate and $SiO_2$ by plasma assisted atomic layer deposition(PAALD) and thermal ALD, using pentakis (ethylmethlyamino) tantalum (PEMAT) and NH$_3$ as precursors. The TaN films were deposited at $250^{\circ}C$ by both method. The growth rates of TaN films were 0.8${\AA}$/cycle for PAALD and 0.75${\AA}$/cycle for thermal ALD. TaN films by PAALD showed good surface morphology and excellent step coverage for the trench with an aspect ratio of h/w -1.8:0.12 mm but TaN films by thermal ALD showed bad step coverage for the same trench. The density for PAALD TaN was 11g/cmand one for thermal ALD TaN was 8.3g/$cm^3$. TaN films had 3 atomic % carbon impurity and 4 atomic % oxygen impurity for PAALD and 12 atomic % carbon impurity and 9 atomic % oxygen impurity for thermal ALD. The barrier failure for Cu(200 nm)/TaN(10 nm)/$SiO_2$(85 nm)/ Si structure was shown at temperature above $700^{\circ}C$ by XRD, Cu etch pit analysis.

  • PDF

Magnetic Properties of Spin Valve Ta Underlayer Depending on N2 Concentration and Annealing Temperature (스핀 밸브 Ta 하지층의 질소함유량 변화와 열처리 온도에 따른 자기적 특성)

  • Choi, Yeon-Bong;Kim, Ji-Won;Jo, Soon-Chul;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.226-230
    • /
    • 2005
  • In this research, magnetic properties and annealing effects of the spin valve structures were investigated, which have Ta underlayer deposited with Ar and $N_2$ gas mixture. Also, TaN underlayer as a diffusion barrier and the substrate were investigated. The structure of the spin valve was Si($SiO_2$)/Ta(TaN)/NiFe/CoFe/Cu/CoFe/FeMn/Ta. Deposition rate was decreased and resistivity and roughness of the TaN films were increased as the $N_2$ gas flow was increased. The XRD results after high temperature annealing showed that Silicides were created in Si/Ta layer, but not in Si/TaN layer. Magnetoresistance ratio (MR) and exchange coupling field ($H_{ex}$) were decreased when the $N_2$ gas flow was increased over 4.0 sccm. The MR of the spin valves with Ta and TaN films deposited with up to 4.0 sccm of $N_2$ gas flow was increased about $0.5\%$ until the annealing temperature of up to $200^{\circ}C$ and then, decreased. TaN film deposited with 8.0 sccm of $N_2$ gas flow showed twice the adhesion of the Ta film. The above results indicate that with 3.0 sccm of $N_2$ gas flow during the Ta underlayer deposition, the magnetic properties of the spin valves are maintained, while the underlayer may be used as a diffusion barrier and the adhesion between the Si substrate and the underlayer is increased.

Transport properties of polycrystalline TaNx thin films prepared by DC reactive magnetron sputtering method

  • Hwang, Tae Jong;Jung, Soon-Gil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • We have investigated the electrical transport properties of polycrystalline tantalum nitride (TaNx) films. Various compositions of tantalum (nitride) thin films have been deposited on SiO2 substrates by reactive DC magnetron sputtering while changing the ratio of nitrogen partial pressure. The substrate temperature was maintained at 283 K during deposition. X-ray diffraction analyses indicated the presence of α-Ta and β-Ta phases in the Ta film deposited in pure argon atmosphere, while fcc-TaNx phases appeared in the sputtering gas mixture of argon and nitrogen. The N/Ta atomic ratio in the film increased ranging from 0.36 to 1.07 for nitrogen partial pressure from 7 to 20.7%. The superconducting transition temperatures of the TaNx thin films were measured to be greater than 3.86 K with a maximum of 5.34 K. The electrical resistivity of TaNx thin film was in the range of 177-577 𝜇Ωcm and increased with an increase in nitrogen content. The upper critical filed at zero temperature for a TaN0.87 thin film was estimated to exceed 11.3 T, while it showed the lowest Tc = 3.86 K among the measured superconducting TaNx thin films. We try to explain the behavior of the increase of the residual resistivity and the upper critical field for TaNx thin films with the nitrogen content by using the combined role of the intergrain Coulomb effect and disorder effect by grain boundaries.

Chemical vapor deposition of $TaC_xN_y$ films using tert-butylimido tris-diethylamido tantalum(TBTDET) : Reaction mechanism and film characteristics

  • Kim, Suk-Hoon;Rhee, Shi-Woo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • Tantalum carbo-nitride($T_aC_xN_y$) films were deposited with chemical vapor deposition(CVD) using tert-butylimido tris-diethylamido tantalum (TBTDET, $^tBu-N=Ta-(NEt_2)_3$, $Et=C_2H_5$, $^tBu=C(CH_3)_3$) between $350^{\circ}C$ and $600^{\circ}C$ with argon as a carrier gas. Fourier transform infrared (FT-IR)spectroscopy was used to study the thermal decomposition behavior of TBTDET in the gas phase. When the temperature was increased, C-H and C-N bonding of TBTDET disappeared and the peaks of ethylene appeared above $450^{\circ}C$ in the gas phase. The growth rate and film density of $T_aC_xN_y$ film were in the range of 0.1nm/min to 1.30nm/min and of $8.92g/cm^3$ to $10.6g/cm^3$ depending on the deposition temperature. $T_aC_xN_y$ films deposited below $400^{\circ}C$ were amorphous and became polycrystal line above $500^{\circ}C$. It was confirmed that the $T_aC_xN_y$ film was a mixture of TaC, graphite, $Ta_3N_5$, TaN, and $Ta_2O_5$ phases and the oxide phase was formed from the post deposition oxygen uptake. With the increase of the deposition temperature, the TaN phase was increased over TaC and $Ta_3N_5$ and crystallinity, work function, conductivity and density of the film were increased. Also the oxygen uptake was decreased due to the increase of the film density. With the increase of the TaC phase in $T_aC_xN_y$ film, the work function was decreased to 4.25eV and with the increase of the TaN phase in $T_aC_xN_y$ film,it was increased to 4.48eV.

  • PDF

A study on the manufacturing of super precision multilayer cermet thin film resistor (초정밀 다층 Cermet 박막저항체 제조에 관한 연구)

  • 허명수;최승우;천희곤;권식철;이건환;조동율
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.77-84
    • /
    • 1997
  • Super precision resistor was manufactured by controlling properly the thickness of $TaN_{0.1}$ (negative TCR) and Cr(positive TCR) deposited on cylindrical alumina substrate (diameter: 4 mm, length: 11 mm). Multilayer thin film resistor of $Ta_2O_5/TaN_{0.1}$/Cr/Alumina (substrate) was manufactured by depositing of $Ta_2N_5$ film on $TaN_{0.1}$ film to increase Rs to the level of 1;k{\Omega}/{\box}$ and to passivate the film. Super precision resistor with TCR of $20\pm5 ppm/^{\circ}C$ and Rs of $1\;k{\Omega}/{\box}$ was manufactured by depositing thin layers of about 10 nm $Ta_2O_5$, 100 nm $TaN_{0.1}$ and 50 nm Cr film under the properly controlled sputtering condition.

  • PDF