Browse > Article
http://dx.doi.org/10.9714/psac.2021.23.2.001

Transport properties of polycrystalline TaNx thin films prepared by DC reactive magnetron sputtering method  

Hwang, Tae Jong (School of General Education, Yeungnam University)
Jung, Soon-Gil (Center for Quantum Materials and Superconductivity (CQMS), Sungkyunkwan University)
Publication Information
Progress in Superconductivity and Cryogenics / v.23, no.2, 2021 , pp. 1-5 More about this Journal
Abstract
We have investigated the electrical transport properties of polycrystalline tantalum nitride (TaNx) films. Various compositions of tantalum (nitride) thin films have been deposited on SiO2 substrates by reactive DC magnetron sputtering while changing the ratio of nitrogen partial pressure. The substrate temperature was maintained at 283 K during deposition. X-ray diffraction analyses indicated the presence of α-Ta and β-Ta phases in the Ta film deposited in pure argon atmosphere, while fcc-TaNx phases appeared in the sputtering gas mixture of argon and nitrogen. The N/Ta atomic ratio in the film increased ranging from 0.36 to 1.07 for nitrogen partial pressure from 7 to 20.7%. The superconducting transition temperatures of the TaNx thin films were measured to be greater than 3.86 K with a maximum of 5.34 K. The electrical resistivity of TaNx thin film was in the range of 177-577 𝜇Ωcm and increased with an increase in nitrogen content. The upper critical filed at zero temperature for a TaN0.87 thin film was estimated to exceed 11.3 T, while it showed the lowest Tc = 3.86 K among the measured superconducting TaNx thin films. We try to explain the behavior of the increase of the residual resistivity and the upper critical field for TaNx thin films with the nitrogen content by using the combined role of the intergrain Coulomb effect and disorder effect by grain boundaries.
Keywords
TaN; superconductivity; upper critical filed; intergrain Coulomb effect; disorder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. S. Shin, Y. W. Kim, D. Gall, J. E. Greene, and I. Petrov, " Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si(001) and MgO(001) by reactive magnetron sputter deposition." Thin Solid Films, vol. 402, pp. 172-182, 2002.   DOI
2 N. Arshi, J. Lu, Y. K. Joo, J. H. Yoon, and B. H. Koo. "Effects of nitrogen composition on the resistivity of reactively sputtered TaN thin films," Surf. Interface Anal., vol. 47, pp. 154-160, 2015.   DOI
3 S. M. Kang, S. G. Yoon, S. J. Suh, and D. H. Yoon, "Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors," Thin Solid Films, vol. 516, pp. 3568-3571, 2008.   DOI
4 A. A. Navid and A. M. Hodge, "Nanostructured alpha and beta tantalum formation-Relationship between plasma parameters and microstructure," Mater. Sci. Eng. A, vol. 536, pp. 49-56, 2012.   DOI
5 S. Chaudhuri, L. J. Maasilta, L. Chandernagor, M. Ging, and M. Lahtinen, "Fabrication of superconducting tantalum nitride thin films using infrared pulsed laser deposition," J. Vac. Sci. Technol., vol. 31, pp. 061502-061506, 2013.   DOI
6 T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, and J. K. Kivilahti, "Reactive sputter deposition and properties of TaxN thin films," Microelectron. Eng., vol. 64, pp. 289-297, 2002.   DOI
7 K. B. Efetov and A. Tschersich, "Coulomb effects in granular materials at not very low temperatures," Phys. Rev. B, vol. 67, pp. 174205-174219, 2003.   DOI
8 N. P. Breznay, M. Tendulkar, L. Zhang, S. C. Lee, and A. Kapitulnik, "Superconductor to weak-insulator transitions in disordered tantalum nitride films," Phys. Rev. B, vol. 96, pp. 134522-134530, 2017.   DOI
9 K. Il'in, M. Hofherr, D. Rall, M. Siegel, A. Semenov, A. Engel, K. Inderbitzin, A. Aeschbacher, and A. Schilling, "Ultra-thin TaN film for superconducting nanowire single-photon detectors," J. Low Temp. Phys., vol. 167, pp. 809-814, 2012.   DOI
10 T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, "Diffusion barrier property of TaN between Si and Cu," Appl. Surf. Sci., vol. 99, pp. 265-272, 1996.   DOI
11 N. Terao, "Structure of tantalum nitrides," Jpn. J. Appl. Phys., vol. 10, pp. 248-259, 1971.   DOI
12 A. Tiwari, H. Wang, D. Kumar, and J. Naryan, "Weak-localization effect in single crystal TaN(001) films," Mod. Phys. Lett. B, vol. 16, pp. 1143-1149, 2002.   DOI
13 K. Lal, P. Ghosh, D. Biswas, A. K. Meikap, S. K. Chattopadhyay, S. K. Chatterjee, M. Ghosh, K. Baba, and R. Hatada, "A low temperature study of electron transport properties of tantalum nitride thin films prepared by ion beam assisted deposition," Solid State Commun., vol 131, pp. 479-484, 2004.   DOI
14 R. Sachser, F. Porrati, C. H. Schwalb, and M. Huth, "Universal conductance correction in a tunable strongly coupled nanogranular metal," Phys. Rev. Lett., vol. 107, pp. 206803-206807, 2011.   DOI
15 Y. C. Sun, S. S. Yeh, and J. J. Lin, "Conductivity and tunneling density of states in granular Cr films," Phys. Rev. B, vol. 82, pp. 054203-054209, 2010.   DOI
16 R. Li, X. Z. Duan, X. Zhu, Y. Yang, D. B. Zhou, and Z. Q. Li, "Granular-composite-like electrical transport properties of polycrystalline cubic TaNx thin films prepared by rf sputtering method," Solid State Commun., vol. 279, pp. 34-38, 2018.   DOI
17 C. S. Shin, D. Gall, Y. W. Kim, P. Desjardins, I. Petrov, J. E. Greene, M. Oden, and L. Hultma, "Epitaxial NaCl structure δ-TaNx(001): Electronic transport properties, elastic modulus, and hardness versus N/Ta ratio." J. Appl. Phys., vol. 90, pp. 2873-2885, 2001.
18 K. Radhakrishnan , N. G. Ing, R. Gopalakrishnan, "Reactive sputter deposition and characterization of tantalum nitride thin films," Mater. Sci. Eng. B, vol. 57, pp. 224-227, 1999.   DOI
19 M. Ocko, S. Zonja, G. L. Nelson, J. K. Freericks, L. Yu, and N. Newrman, "Low-temperature transport properties of TaxN thin films (0.72≤x≤0.83)," J. Phys. D: Appl. Phy., vol. 43, pp. 445405-445416, 2010.   DOI
20 J. J. Senkevich, T. Karabacak, D. L. Bae, and T. S. Cale, "Formation of body-centered-cubic tantalum via sputtering on low-κ dielectrics at low temperatures," J. Vac. Sci. Technol. B, vol. 24, pp. 534-538, 2006.   DOI
21 S. Bose, P. Raychaudhuri, R. Banerjee, P. Vasa, and P. Ayyub, "Mechanism of the size dependence of the superconducting transition of nanostructured Nb," Phys. Rev. Lett., vol. 95, pp. 147003-147006, 2005.   DOI
22 V.L. Ginzburg and L.D. Landau., "On the theory of superconductivity," Zh. Eksp. Teor. Fiz. vol. 20, pp. 1064-1082, 1950.
23 H. J. Niu and D. P. Hampshire, "Disordered nanocrystalline superconducting PbMo6S8 with a very large upper critical field," Phys. Rev. Lett., vol. 91, pp. 027002-027005, 2003.   DOI