• Title/Summary/Keyword: $Spin^c$-structure

Search Result 287, Processing Time 0.023 seconds

Structural and electrical properties of (Ba0.7Sr0.3)TiO3 thin films for the application of electro-caloric devices

  • Kwon, Min-Su;Lee, Sung-Gap;Kim, Kyeong-Min;Choi, Seungkeun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 2019
  • This study was conducted on the structural and electrical properties of (Ba0.7Sr0.3)TiO3 thin films prepared by the sol-gel and spin-coating methods in order to investigate their applicability to electrocaloric devices. All specimens showed a tetragonal crystal structure and lattice constants of a = 3.972 Å, c = 3.970 Å. The mean grain size of specimens sintered at 800 ℃ was about 30 nm, and the average thickness of 5 times coated specimens was 304~311 nm. In the specimen sintered at 750 ℃, The relative dielectric constant and loss of specimens measured at 20 ℃ were 230 and 0.130, respectively, while dependence of the dielectric constant on unit DC voltage was -8.163 %/V. The remanent polarization and coercive fields were 95.5 μC/㎠ and 161.3 kV/cm at 21 ℃, respectively. And, the highest electrocaloric property of 2.69 ℃ was observed when the electric field of 330 kV/cm was applied.

Synthesis and characterization of LiCoO2 thin film by sol-gel process (Sol-gel법에 의한 LiCoO2 박막의 합성과 특성평가)

  • Roh, Tae-Ho;Yon, Seog-Joo;Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.94-98
    • /
    • 2014
  • $LiCoO_2$ thin film has received diverse attention as cathodes material of thin-film micro-batteries. In this study, $LiCoO_2$ thin films were synthesized on Au substrates by sol-gel spin coating method and an annealing process. Their structures were studied using X-ray diffraction and Raman Spectroscopy. The particle morphologies of these thin films were observed by Scaning electron microscope. From the results of X-ray diffractometry and Raman Spectroscopy analyses, it was found that as-grown films had the structure of spinel (LT-$LiCoO_2$) and layered-Rock-salt (HT-$LiCoO_2$) at $550^{\circ}C$ and $750^{\circ}C$ respectively. The annealed films at $650^{\circ}C$ were presumed to be the mixed state of these two types. Throlugh the scanning electron microscope, It was estimated that the particle size in as-grown films at $750^{\circ}C$, were larger crystilline particle than in those at the other lower temperature and well distributed in the film.

Full Geometry Optimizations of Bond-Stretch Isomers of C202+ Fullerene Dication by the Hybrid Density Functional B3LYP Methods

  • Lee, Ji-Hyun;Lee, Chang-Hoon;Park, Sung-S.;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.277-280
    • /
    • 2011
  • We studied the relative stability and atomic structure of five $C_{20}^{2+}$ isomers obtained by two-electron ionization of a $C_{20}$ cage (the smallest fullerene). All the isomers are bond-stretch isomers, i.e., they differ in bond length. In particular, in one of the isomers with Ih symmetry, all the bond lengths are equal. Full geometry optimizations of the dipositive ion $C_{20}^{2+}$ were performed using the hybrid density functional (B3LYP/6-31G(d)) methods. All isomers were found to be true minima by frequency analysis at the level of B3LYP/6-31G(d) under the reinforced tight convergence criterion and a pruned (99,590) grid. The zero-point correction energy for the cage bond-stretch isomers was in the increasing order $D_{2h}<C_{2h}<C_2<T_h<I_h$ of $C_{20}^{2+}$. The energy difference among the isomers of cage dipositive ions was less than that among neutral cage isomers. Our results suggest that these isomers show bond-stretch isomerism and that they have an identical spin state and an identical potential energy curve. Although the predominant electronic configurations of the isomers are similar, the frontier orbital characteristics are different, implying that we could anticipate an entirely different set of characteristic chemical reactions for each type of HOMO and LUMO.

High-Resolution MRI Study on Mouse Brain Using Micro-Imaging (초고해상도 미세영상 기법을 이용한 Mouse 뇌의 자기공명영상 연구)

  • Han, Doug-Young;Yoon, Moon-Hyun;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • Purpose : By using the micro-imaging unit modified from NMR spectrometer, the high resolution MRI protocols of finer than 100 micron in 5 minutes, is sought for mouse, which plays a central role in animal studies Materials and Methods : C57BL/6 mouse, lighter than 50 gram, is used for the experiments. The superconducting magnet is vertical type with 89 mm inner diameter at 4.9 Tesla. The diameter of rf-coil is 30 mm. Mostly used techniques are the fast spin echo and the gradient echo pulse sequence. Results : For 2D images, proton density and T2 weighted images are obtained and their optimum experimental variables were sought. Minute structure of mouse brain can be recognized and 3D brain image is also obtained additionally. 3D image will be useful particularly for the dynamic contrast study using various contrast agents. Conclusion : Like the case of human and other small animals, the high resolution of mouse brain is enough to recognize the minute structure of it. Recently, similar studies are reported domestically, but it seems only a beginning stage. Due to easiness of breeding/control, mouse MRI study will soon play a vital part in brain study.

  • PDF

Temperature dependence of photocurrent for the AgInS2 epilayers grown by hot wall epitaxy (Hot Wall Epitaxy 방법에 의해 성장된 AgInS2 박막의 광전류 온도 의존성)

  • Park, Chang-Sun;Hong, Kwang-Joon;Lee, Sang-Youl;You, Sang-Ha;Lee, Bong-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • A silver indium sulfide ($AgInS_{2}$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_{2}$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_{2}$ was investigated by means of the photocurrent measurement. The crystal field splitting, ${\Delta}cr$, and the spin orbit splitting, ${\Delta}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}$(T), was determined.

Influence of Precursor Solution Coating Parameters on Ferroelectric Properties of Pb(Zr0.7Ti0.3)O3 Thick Films (Pb(Zr0.7Ti0.3)O3 후막의 강유전 특성에 전구체 용액의 코팅요소가 미치는 영향)

  • Park, Sang-Man;Yun, Sang-Eun;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1092-1098
    • /
    • 2006
  • The influence of the concentration of precursor solution and the number of solution coatings on the densification of the $Pb(Zr_xTi_{1-x})O_3$ (PZT) thick films was studied. PZT powder and PZT precursor solution were prepared by3 sol-gel method and PZT thick films were fabricated by the screen-printing method on the alumina substrates. The composition of powder and precursor solution were PZT(70/30) and PZT(30/70), respectively. The PZT precursor solution was spin-coated on the PZT thick films. A concentration of a coating solution was 0.5 to 2.0 mol/L[M] and the number of coating was repeated from 0 to 6. The XRD patterns of all PZT thick films shelved typical perovskite polycrystalline structure. The porosity of the thick films was decreased with increasing the number of coatings and 6-time coated films with 1.5 M showed the dense microstructure and thickness of about $60{\mu}m$. The relative dielectric constant of the PZT thick film was increased with increasing the number of solution coatings and the thick films with 1.5 M, 6-time coated showed the 698. The remanent polarization the 1.5 M and 6-time coated PZT thick films was $38.3{\mu}C/cm^2$.

Crystallinity Control Effects on Vanadium Oxide Films for Enhanced Electrochromic Performances (전기변색 성능 향상을 위한 바나듐산화물 막의 결정성 제어 효과)

  • Kim, Kue-Ho;Bae, Ju-Won;Lee, Tae-Kuen;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.385-391
    • /
    • 2019
  • In the present study, vanadium oxide($V_2O_5$) films for electrochromic(EC) application are fabricated using sol-gel spin coating method. In order to optimize the EC performance of the $V_2O_5$ films, we adjust the amounts of polyvinylpyrrolidone(PVP) added to the solution at 0, 5, 10, and 15 wt%. Due to the effect of added PVP on the $V_2O_5$ films, the obtained films show increases of film thickness and crystallinity. Compared to other samples, optimum weight percent(10 wt%) of PVP led to superior EC performance with transmittance modulation(45.43 %), responding speeds(6.0 s at colored state and 6.2 s at bleached state), and coloration efficiency($29.8cm^2/C$). This performance improvement can be mainly attributed to the enhanced electrical conductivity and electrochemical activity due to the increased crystallinity and thickness of the $V_2O_5$ films. Therefore, $V_2O_5$ films fabricated with optimized amount of PVP can be a promising EC material for high-performance EC devices.

First Principles Calculations on Electronic Structure and Magnetism of Transition Metal Doped ZnO (전이금속이 도핑된 ZnO의 전자구조와 자성에 대한 제일원리계산)

  • Yun, Sun-Young;Cha, Gi-Beom;Hong, Sun-C.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • In this study we investigate the electronic structure and magnetism of transition metal (TM = Ti, Cr, Mn, Fe, Co, Ni, Ru, Pd, Ag ) deped ZnO($TM_{0.25}Zn_{0.75}O$), which are expected to have Curie temperature. Full-potential Linearized Augmented Plane Wave(FLAPW) metod is adopted with exchange-correlation potential expressed as general gradient approximation(GGA). The calculated magnetic moments of ($TM_{0.25}Zn_{0.75}O$) are 0.83, 3.03, 4.03, 3.48, 2.47, 1.56, 0.43, 0.75, 0.01 ${\mu}_B$ for TM = Ti, Cr, Mn, Fe, Co, Ni, Ru, Pd, Ag, respectively. The nearest neighbor O atom to the transition metal is calculated to have a significant magnetic moment of about 0.1${\mu}_B$, ?? 새 strong hybridization between O-p and TM-d bands. As the results, the systems may have larger magnetic moments in total, compared to the corresponding isolated atoms. The 3d TM doped systems exhibit the half-metallic character except Co, wheres the 4d TM doped systems behave like normal metals and low spin polarization at the Fermi levels.

Growth of Zn0.4Fe2.6O4 Thin Films using Pulsed Laser Deposition and their Crystal Structural and Magnetic Properties (Pulsed Laser Deposition을 이용한 Zn0.4Fe2.6O4 박막의 합성과 그 결정성 및 자기적 특성의 연구)

  • Jang, A.N.;Song, J.H.;Park, C.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.88-92
    • /
    • 2011
  • We grew $Zn_{0.4}Fe_{2.6}O_4$ thin films using Pulsed Laser Deposition and studied their crystal structure and magnetical characteristics as a function of growth temperature ($T_g$). For the film with $T_g=300^{\circ}C$, X-ray reflections from ${\alpha}-Fe_2O_3$ and ZnO were observed. However, when $T_g$ was increased from 300 to $500^{\circ}C$, crystal structure of inverse spinel was stabilized with the crystal orientation of $Zn_{0.4}Fe_{2.6}O_4(111)/Al_2O_3(0001)$ without any detection of ${\alpha}-Fe_2O_3$ and ZnO phases. The surface morphology shows flattening behavior with increasing $T_g$ from 300 to $500^{\circ}C$. These observations indicate that Zn is substituted into tetrahedron A-site of the inverse-spinel $Fe_3O_4$. M-H curves exhibit clear ferromagnetism for the sample with $T_g=500^{\circ}C$ whereas no ferromagnetism is observed for the film with $T_g=300^{\circ}C$.

Improved Magnetic Anisotropy of YMn1-$xCrxO_3 $ Compounds

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.218-218
    • /
    • 2012
  • Recently, hexagonal manganites have attracted much attention because of the coexistence of ferroelectricity and antiferromagnetic (AFM) order. The crystal structure of hexagonal manganites consists of $MnO_5$ polyhedra in which $Mn^{3+}$ ion is surrounded by three oxygen atoms in plane and two apical oxygen ions. The Mn ions within Mn-O plane form a triangular lattice and couple the spins through the AFM superexchange interaction. Due to incomplete AFM coupling between neighboring Mn ions in the triangular lattice, the system forms a geometrically-frustrated magnetic state. Among hexagonal manganites, $YMnO_3$, in particular, is the best known experimentally since the f states are empty. In addition, for applications, $YMnO_3$ thin films have been known as promising candidates for non-volatile ferroelectric random access memories. However, $YMnO_3$ has low magnetic order temperature (~70 K) and A-type AFM structure, which hinders its applications. We have synthesized $YMn1_{-x}Cr_xO_3$ (x = 0, 0.05 and 0.1) samples by the conventional solid-state reaction. The powders of stoichiometric proportions were mixed, and calcined at $900^{\circ}C$ for $YMn1_{-x}Cr_xO_3$ for 24 h. The obtained powders were ground, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, and heated up to $1,300^{\circ}C$ and sintered in air for 24 h. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu $K{\alpha}$ radiation. All the magnetization measurements were carried out with a superconducting quantum-interference-device magnetometer. Our experiments point out that the Cr-doped samples show the characteristics of a spin-glass state at low temperatures.

  • PDF