• Title/Summary/Keyword: $SnO_2$sensor

Search Result 250, Processing Time 0.029 seconds

Consideration on $H_2S$ Sensing Mechanism of CuO-$SnO_2$ Thick Film through the Analysis of the Temperature-Electrical Resistance Characteristics (온도-전기저항 특성 해석을 통한 CuO-$SnO_2$ 후막 소자의 $H_2S$ 감지기구 고찰)

  • 유도준;준타마키;박수잔;노보류야마조에
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.379-384
    • /
    • 1996
  • The H2S sensing mechanism of CuO-SnO2 was confirmed by analyzing the electrical-resistance variation with temperature under an H2S atmosphere. While the resistance of CuO-SnO2 thick film at N2+H2S atmosphere was almost invariant with change in temperature it increased with increasing temperature for air +H2S atmos-phere. This behavior was analyzed using an equation derived from a basic assumption based on the H2S sensing mechanism proposed before. the experimental results are sufficiently explained with the equation derived which showed that the H2S sensing mechanism was reasonable. The equation also gave a detailed analysis and physical meaning to the behavior of the resistance variation with change in H2S concentration.

  • PDF

Gas Sensing Characteristics of SnO2 Coated with Catalyst for Hydrocarbon Gas (촉매가 첨가된 SnO2 가스센서의 탄화수소 가스에 대한 감응 특성)

  • Lee, Ji-Young;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.358-361
    • /
    • 2012
  • Co and Ni as catalysts in $SnO_2$ sensors to improve the sensitivity for $CH_4$ gas and $CH_3CH_2CH_3$ gas were coated by a solution reduction method. $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates with an electrode. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a chamber. The structural properties of $SnO_2$ with a rutile structure investigated by XRD showed a (110) dominant $SnO_2$ peak. The particle size of the $SnO_2$:Ni powders with Ni at 6 wt% was about 0.1 ${\mu}m$. The $SnO_2$ particles were found to contain many pores according to a SEM analysis. The sensitivity of $SnO_2$-based sensors was measured for 5 ppm of $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air to that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors coated with 6 wt% Ni. The $SnO_2$:Ni gas sensors showed good selectivity to $CH_4$ gas. The response time and recovery time of the $SnO_2$:Ni gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 20 seconds and 9 seconds, respectively.

Characteristics of Indium Doped SnO2 Thick Film for Gas Sensors (Indium 첨가된 SnO2 후막형 가스센서의 특성)

  • Yu, Il;Lee, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.408-411
    • /
    • 2010
  • Indium doped $SnO_2$ thick films for gas sensors were fabricated by a screen printing method on alumina substrates. The effects of indium concentration on the structural and morphological properties of the $SnO_2$ were investigated by X-ray diffraction and Scanning Electron Microscope. The structural properties of the $SnO_2$:In by X-ray diffraction showed a (110) dominant $SnO_2$ peak. The size of $SnO_2$ particles ranged from 0.05 to $0.1\;{\mu}m$, and $SnO_2$ particles were found to contain many pores, according to the SEM analysis. The thickness of the indium-doped $SnO_2$ thick films for gas sensors was about $20\;{\mu}m$, as confirmed by cross sectional SEM image. Sensitivity of the $SnO_2$:In gas sensor to 2000 ppm of $CO_2$ gas and 50 ppm of H2S gas was investigated for various indium concentrations. The highest sensitivity to $CO_2$ gas and H2S gas of the indium-doped $SnO_2$ thick films was observed at the 8 wt% and 4 wt% indium concentration, respectively. The good sensing performances of indium-doped $SnO_2$ gas sensors to $CO_2$ gas were attributed to the increase of oxygen vacancies and surface area in the $SnO_2$:In. The $SnO_2$:In gas sensors showed good selectivity to $CO_2$ gas.

Sensing Properties of ZrO2-added SnO2 for Nerve and Blister Agent (ZrO2 첨가된 SnO2를 이용한 신경 및 수포작용제 검지에 대한 연구)

  • Yun, Ky-Youl;Cha, Gun-Young;Choi, Nak-Jin;Lee, Duk-Dong;Kim, Jae-Chang;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.323-328
    • /
    • 2004
  • N-type semi-conducting oxides such as $SnO_{2}$, ZnO, and $ZrO_{2}$ have been known for the detecting materials of inflammable or toxic gases. Of those materials, $SnO_{2}$-based sensors are well known as high sensitive materials to detect toxic gases. And the sensitivity is improved if catalysts are added. Detecting toxic gases, especially DMMP (di-methyl-methyl-phosphonate) and DPGME (Dipropylene glycol methyl ether), was performed by a mixture of Tin oxide ($SnO_{2}$) and Zirconia ($ZrO_{2}$). The films consist of each three different mass% of Zr (from 1 mass% to 5 mass%), and they were tested by XRD, SEM, TEM, BET. Nano-structure, pore and particle size was controlled to verify the sensor's sensing mechanism. The sensors was evaluated at five different degrees (from $200^{\circ}C$ to $400^{\circ}C$) and three different concentrations (from 500 ppb to 1500 ppb). The sensors had good sensitivity of both simulants, and high selectivity of DMMP.

Gas sensing property of polypyrrole and SnO2 composite (폴리피롤과 산화주석 복합재료를 이용한 센서의 가스 검지 특성)

  • Kim, Do-Yeon;Yu, Joon-Boo;Son, Sung-Ok;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.211-215
    • /
    • 2006
  • Conducting polymer (Polypyrrole) and Tin oxide ($SnO_{2}$) composite films have been fabricated with layer-by-layer technique. $SnO_{2}$ layer was screen-printed on $Al_{2}O_{3}$ substrate and then was dip-coated with polypyrrole (Ppy). The microstructures of composite films were evaluated by a field emission scanning electron microscope (FE-SEM) and FTIR spectral analysis. The change in sensitivity to various VOCs was observed. The target VOCs were methanol, ethanol, benzene and toluene. The sensitivities of the $Ppy/SnO_{2}$ sensor to benzene and toluene were very low at 1000 ppm (2.1 %, 1.5 %), while the sensitivities to methanol and ethanol was high (9 %, 11 %). It indicates that the sensors have selectivity to alcoholic gases such as methanol and ethanol.

VOCs(Volatile Organic Compounds) sensor using SnO2 nanowires (산화주석 나노선을 이용한 VOCs 센서)

  • Hwang, In-Sung;Kim, Sun-Jung;Kim, Yoon-Sung;Ju, Byeong-Kwon;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2008
  • VOCs (Volatile Organic Compound) sensors were fabricated using $SnO_2$nanowires-based thin films and its gas sensing behaviors were studied. The $SnO_2$ nanowires synthesized from a thermal evaporation process were dispersed in a solution and the sensor film was prepared by dropping the slurry on the substrate with the electrodes and an embedded heater. The gas response (Ra/Rg, Ra: resistance in air, Rg: resistance in gas) to $30{\sim}40$ ppm Benzene, Ethyl Benzene, o-xylene were in the range of $39{\sim}42$, which were significantly higher than those to 50 ppm of CO, $CH_4$ and $C_3H_8$ ($12{\sim}19$).

Gas Sensing Characteristics of Nano Sized SnO2 Sensors for Various Co and Ni Concentration (Co, Ni 농도 변화에 따른 나노 SnO2 센서의 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.546-549
    • /
    • 2011
  • Nano-sized $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box as a function of the detection gas. The nano-sized $SnO_2$ thick film sensors were treated in a $N_2$ atmosphere. The structural properties of the nano $SnO_2$with a rutile structure according to XRD showed a (110) dominant $SnO_2$ peak. The particle size of $SnO_2$:Ni nano powders at Ni 8 wt% was about 45 nm, and the $SnO_2$ particles were found to contain many pores according to the SEM analysis. The sensitivity of the nano $SnO_2$-based sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors doped with 8 wt% Ni. The response time of the $SnO_2$:Ni gas sensors was 10 seconds and recovery time was 15 seconds for the $CH_4$ and $CH_3CH_2CH_3$ gases.

Fabrication of the SnO2 thin-film gas sensors using an R.F. magnetron sputtering method and their alcohol gas-sensing characterization (R.F. Magnetron Sputtering 법을 이용한 SnO2 박막 센서의 제조 및 알콜 감도 특성)

  • Park, Sang-Hyoun;Kang, Ju-Hyun;Yoo, Kwang-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • The nano-grained Pd or Pt-doped $SnO_{2}$ thin films were deposited on the alumina substrate at ambient temperature or $300^{\circ}C$ by using an R.F. magnetron sputtering system and then annealed at $650^{\cir}C$ for 1 hour or 4 hours in air. The crystallinity and microstructure of the annealed films were analyzed. A grain size of the thin films was 30 nm to 50 nm. As a result of gas sensitivity measurements to an alcohol vapor of $36^{\circ}C$, the 2 wt.% Pt-doped $SnO_{2}$ thin-film sensor deposited at $300^{\circ}C$ and annealed at $650^{\circ}C$ for 4 hours showed the highest sensitivity.

Gas-sensing Characteristics of $WO_3$-$SnO_2$Thin-film Sensors ($WO_3$-$SnO_2$박막 센서의 가스감지특성)

  • 유광수;김태송
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1180-1186
    • /
    • 2001
  • W $O_3$-Sn $O_2$thin film sensors with approximately 1${\mu}{\textrm}{m}$ in thickness were fabricated by using a high-vacuum resistance-heating evaporator, were annealed at 50$0^{\circ}C$ for 4 hours in air, and then their crystallinities and surface microstructures were analyzed. As results of gas-sensing characteristics to oxidizing gas, N $O_2$, and reducing gas, CO, of 100 ppm, the highest gas sensitivities (S= $R_{gas}$/ $R_{air}$) were the W $O_3$thin-film sensor measured at 25$0^{\circ}C$ for N $O_2$(S≒1000) and the Sn $O_2$thin-film sensor measured at 15$0^{\circ}C$ to 25$0^{\circ}C$ range for CO (S≒0.25), respectively.ely.

  • PDF