• Title/Summary/Keyword: $Si_3N_4$ composite

Search Result 113, Processing Time 0.026 seconds

Fabrication and characterization of Copper/Silicon Nitride composites

  • Ahmed, Mahmoud A.;Daoush, Walid M.;El-Nikhaily, Ahmed E.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.131-140
    • /
    • 2016
  • Copper/silicon nitride ($Cu/Si_3N_4$) composites are fabricated by powder technology process. Copper is used as metal matrix and very fine $Si_3N_4$ particles (less than 1 micron) as reinforcement material. The investigated powder were used to prepare homogenous ($Cu/Si_3N_4$) composite mixtures with different $Si_3N_4$ weight percentage (2, 4, 6, 8 and10). The produced mixtures were cold pressed and sintered at different temperatures (850, 950, 1000, $1050^{\circ}C$). The microstructure and the chemical composition of the produced $Cu/Si_3N_4$ composites were investigated by (SEM) and XRD. It was observed that the $Si_3N_4$ particles were homogeneously distributed in the Cu matrix. The density, electrical conductivity and coefficient of thermal expansion of the produced $Cu/Si_3N_4$ composites were measured. The relative green density, sintered density, electrical conductivity as well as coefficient of thermal expansion were decreased by increasing the reinforcement phase ($Si_3N_4$) content in the copper matrix. It is also founded that the sintered density and electrical conductivity of the $Cu/Si_3N_4$ composites were increased by increase the sintering temperature.

Mechanical and Tribological Properties of $\beta-Sialon/SiC$ Whisker Composite ($\beta-Sialon/SiC$ Whisker 복합재료의 기계적 물성 및 마찰 마모 특성 연구)

  • 김호균;소유영;김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1259-1264
    • /
    • 1994
  • $\beta$-Sialon has been regarded as one of promising materials showing high strength, fracture toughness, corrosion resistence and wear resistence. The improvement of the fracture toughness and tribological properties of $\beta$-Sialon (Z=1) has been attempeted by fabricating the $\beta$-Sialon/ SiC whisker composite. Each of green body composed of following ingredients, i.e., Si3N4, AlN, Y2O3 nd SiC, respectively, was first fired at 178$0^{\circ}C$ for 3hrs in N2 atmosphere and then post-HIPed at 173$0^{\circ}C$ for 1 hr under 170 MPa for N2 gas pressure. The fracture toughness, flexural strength and tribological properties increased with increasing SiC whisker content, despite the reduction of the relative density and hardness. $\beta$-Sialon/15 vol% SiC whisker showed a significant enhancement of wear resistance compared to the monolithic $\beta$-Sialon. The addition of SiC whisker caused the reduction of the density and hardness, but induced the increment of wear resistance.

  • PDF

Effect of Additive Composition on Fracture Toughness of In Situ-Toughened SiC−Si3N4 Composites

  • Lee, Young-Il;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.189-193
    • /
    • 2007
  • Effect of additive composition on fracture toughness of in situ-toughened $SiC-Si_3N_4$ composites was investigated for five different additive compositions. The highest toughness $(6.4MPa{\cdot}m^{1/2})\;in\;SiC-Si_3N_4$ composites investigated herein was obtained when an Y-Mg-Si-Al-O-N oxynitride glass was used as a sintering additive. The improvement in fracture toughness was produced by enhanced bridging and deflection by $Si_3N_4$ grains.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Novel Synthesis and Properties of $Si_3N_4$-based Nano/Nano-Type Composites

  • Yoshimura, Masahi
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.210-213
    • /
    • 2001
  • $Si_3N_4$/TiN nano/nano-type composites were successfully fabricated by the combination of a mechano-chemical grinding (MCG) method and a short time sintering process, and their wear resistance was evaluated. Powder mixtures of $\alpha-Si_3N_4$and Ti were prepared using mechano-chemical grinding process and the resulting nanocomposite powder mixtures were consolidated using pulsed electric current sintering (PECS). TEM observation showed that the nano/nano-type composites consisted of homogeneous and very fine matrix grains with the size less than 100 nm. The obtained $Si_3N_4$-based nano/nano-type showed high wear resistance and electric discharge machinability.

  • PDF

Synthesis and properties of $Al_2O_3-SiC$ Composites from Alkoxides III. Effect of Composite Powder Type on the Sintering Characteristics and Properties of $Al_2O_3-SiC$ Comopsites (알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 III. 복합분말의 형태에 따른 $Al_2O_3-SiC$ 복합재료의 소결 특성 및 물성)

  • 이홍림;김규영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.316-324
    • /
    • 1993
  • Three types of dispersed, coated and mechanically mixed SiC reinforced Al2O3 composite powders were used to investigate the effect of composite powder type on sintering characteristics and properties of Al2O3-SiC composites. Sinterability of coated type composite powders was superior to that of other composite powders when they were pressureless sintered at 1500~1$700^{\circ}C$ for 2h in Ar atmosphere. However, sinterabilities (>98% TD) of each type of composite powders were similar when they were hot pressed at 180$0^{\circ}C$ for 1h under 30MPa in N2 atmosphere. SiC powders were randomly distributed in the specimen prepared from dispersed type composite powders, whereas homogeneously distributed for coated type specimens. It was found that SiC powders inhibited the grain growth of Al2O3, and fracture toughness was increased by the increment of crack growth resistance due to residual stress by secondary SiC particles within Al2O3 grains.

  • PDF

Synthesis and Characteristics of New Quaternary Superhard Ti-Mo-Si-N Coatings (새로운 고경도 Ti-Mo-Si-N 코팅막의 합성 및 기계적 특성)

  • Jeon, Jin-Woo;Hong, Seung-Gyun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.245-249
    • /
    • 2006
  • In this study, ternary Ti-Mo-N and new quaternary Ti-Mo-Si-N coatings were synthesized on steel substrates(AISI D2) and Si wafers by a hybrid coating system of arc ion plating (AIP) using Ti target and d.c. magnetron sputtering technique using Mo and Si targets in $N_2/Ar$ gaseous mixture. Ternary Ti-Mo-N coatings were substitutional solid-solution of (Ti, Mo)N and showed maximum hardness of approximately 30 GPa at the Mo content of ${\sim}10$. %. The Ti-Mo-Si-N coating with the Si content of 8.8 at. % was a composite consisting of fine (Ti, Mo)N crystallites and amorphous $Si_3N_4$ phase. The hardness of the Ti-Mo-Si(8.8 at. %)-N coatings exhibited largely increased hardness value of ${\sim}48$ GPa due to the microstructural evolution to the fine composite microstructure and the refinement of (Ti, Mo)N crystallites. The average friction coefficient of the Ti-Mo-Si-N coatings largely decreased with increase of Si content. The microstructures of Ti-Mo-Si-N coatings were investigated with instrumental analyses of XRD, XPS, and HRTEM in this work.

Microstructure Control and Mechanical Properties of Continuously Porous SiC-Si3N4 Composites (연속다공질 SiC-Si3N4 복합체의 미세구조 및 기계적 특성)

  • Paul Rajat Kanti;Gain Asit Kumar;Lee Hee-Jung;Jang Hee-Dong;Lee Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.188-192
    • /
    • 2006
  • The microstructures and mechanical properties of continuously porous $SiC-Si_3N_4$composites fabricated by multi-pass extrusion were investigated at different Si levels added. Si-powder with different weight percentages (0%, 5%, 10%, 15%, 20%) was added to the SiC powder to make the raw mixture powders, with $6wt%Y_2O_3-2wt%Al_2O_3$ as sintering additives, carbon ($10-15{\mu}m$) as a pore-forming agent, ethylene vinyl acetate as a binder and stearic acid ($CH_3(CH_2)_{16}COOH$) as a lubricant. In the continuously porous $SiC-Si_3N_4$ composites, $Si_3N_4$ whiskers like the hairs of nostrils were frequently observed on the wall of the pores. In this study, the morphology of the $Si_3N_4$ whiskers was investigated with the silicon addition content. In the composites containing of 10 wt% Si, a large number of $Si_3N_4$ whiskers was found at the continuous pore regions. In the sample to which 15 wt% Si powder was added, maximum values of about 101 MPa bending strength and 57.5% relative density were obtained.

Facture Prediction in SiC Fiber Reinforced $Si_3N_4$ Matrix Composites from Electrical Resistivity Measurements (전기저항측정에 의한 SiC섬유강화 $Si_3N_4$기 복합재료의 파괴예측)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.364-368
    • /
    • 2000
  • SiC fiber reinforced $Si_3N_4$ matrix composites combined with electrical conductive phases of carbon fiber and WC powder fabricated by hot pressing at 1773K. The ability to predict fracture in the ceramic matrix composites was evaluated by measuring simultaneous load-deflection and electrical resistanc difference-deflection curves in four point bending tests. The changes in electrical resistance differences closely corresponded to the fracture behavior of the composites. Different electrical conductive phases are suited to predicting different stages and rates of fracture. These obsevations how that it is possible to perform "in situ" fracture detection in ceramic composites.

  • PDF

FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

  • Kim, Weon-Ju;Kim, Daejong;Park, Ji Yeon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.565-572
    • /
    • 2013
  • The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade $SiC_f/SiC$ composites are briefly reviewed. A CVI-processed $SiC_f/SiC$ composite with a PyC or $(PyC-SiC)_n$ interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.