DOI QR코드

DOI QR Code

Microstructure Control and Mechanical Properties of Continuously Porous SiC-Si3N4 Composites

연속다공질 SiC-Si3N4 복합체의 미세구조 및 기계적 특성

  • Paul Rajat Kanti (School of Advanced Materials Engineering, Kongju National University) ;
  • Gain Asit Kumar (School of Advanced Materials Engineering, Kongju National University) ;
  • Lee Hee-Jung (School of Advanced Materials Engineering, Kongju National University) ;
  • Jang Hee-Dong (Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Lee Byong-Taek (School of Advanced Materials Engineering, Kongju National University)
  • ;
  • ;
  • 이희정 (공주대학교 신소재공학부) ;
  • 장희동 (한국지질자원연구원 자원활용소재연구부) ;
  • 이병택 (공주대학교 신소재공학부)
  • Published : 2006.03.27

Abstract

The microstructures and mechanical properties of continuously porous $SiC-Si_3N_4$composites fabricated by multi-pass extrusion were investigated at different Si levels added. Si-powder with different weight percentages (0%, 5%, 10%, 15%, 20%) was added to the SiC powder to make the raw mixture powders, with $6wt%Y_2O_3-2wt%Al_2O_3$ as sintering additives, carbon ($10-15{\mu}m$) as a pore-forming agent, ethylene vinyl acetate as a binder and stearic acid ($CH_3(CH_2)_{16}COOH$) as a lubricant. In the continuously porous $SiC-Si_3N_4$ composites, $Si_3N_4$ whiskers like the hairs of nostrils were frequently observed on the wall of the pores. In this study, the morphology of the $Si_3N_4$ whiskers was investigated with the silicon addition content. In the composites containing of 10 wt% Si, a large number of $Si_3N_4$ whiskers was found at the continuous pore regions. In the sample to which 15 wt% Si powder was added, maximum values of about 101 MPa bending strength and 57.5% relative density were obtained.

Keywords

References

  1. B. T. Lee, D. H. Jang and T. S. Kim, J. Eur. Ceram. Soc., 24, 2313 (2004) https://doi.org/10.1016/S0955-2219(03)00632-0
  2. B. T. Lee, H. G. Jeong and K. Hiraga, Mater. Trans.,JIM, 43, 19 (2002) https://doi.org/10.2320/matertrans.43.19
  3. S. Y. Lee and B. T. Lee, Ceram. Trans., 93, 51 (1998)
  4. A. K. Gain, J. K. Han, H. D. Jang and B.T. Lee, J. Eur. Ceram. Soc., (2005) in press https://doi.org/10.1016/j.jeurceramsoc.2005.06.038
  5. N. Miyakawa, H. Sato, H. Maeno and H. Takahashi, JSAE Review, 24, 269 (2003) https://doi.org/10.1016/S0389-4304(03)00050-X
  6. P. C. Silva and J. L. Figueiredo, Mater. Chem. Phy., 72, 326 (2001) https://doi.org/10.1016/S0254-0584(01)00332-7
  7. C. Kawai and A. Yamakawa, Ceram. Int., 24, 135 (1998) https://doi.org/10.1016/S0272-8842(97)00042-4
  8. N. Gao, K. Watari, S. Kume, Y. Ando, S. Ryo and H. Itoh, J. Eur. Ceram. Soc., 26, 837 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.06.015
  9. P. M. Farries, E. Bullock and R. D. Rawlings, J. Mater. Sci. Lett., 18, 1727-1730 (1999) https://doi.org/10.1023/A:1006650405034
  10. Y. Zhang, Mater. Res. Bull., 39, 401 (2004) https://doi.org/10.1016/j.materresbull.2003.10.019
  11. B. T. Lee and I. C. Kang, J. Am. Ceram. Soc., 88, 2262 (2005)
  12. B. T. Lee, K. H. Kim and J. K. Han, J. Mater. Res., 19, 3234 (2004) https://doi.org/10.1557/JMR.2044.0414
  13. B. T. Lee, D. H. Jang, I. C. Kang and C. W. Lee, J. Am. Ceram. Soc., (2005) in press https://doi.org/10.1111/j.1551-2916.2005.00519.x
  14. B. T. Lee and H. D. Kim, Mater. Trans. JIM, 37, 1547 (1996) https://doi.org/10.2320/matertrans1989.37.1547
  15. J. F. Li, S. Satomi, R. Watanabe, M. Omori and T. Hirai, J. Eur. Ceram. Soc., 20, 1795 (2000) https://doi.org/10.1016/S0955-2219(00)00045-5