• 제목/요약/키워드: $SiO_2$ particle

검색결과 480건 처리시간 0.024초

나노입자들의 자기조립에 의한 TiO2-SiO2 다공체 제조 (Synthesis of Porous TiO2-SiO2 Particles by Self-assembly of Nanoparticles)

  • 오경준;김선경;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제7권3호
    • /
    • pp.79-85
    • /
    • 2011
  • Porous $TiO_2-SiO_2$ particles were synthesized by co-assembly of nanoparticles of $TiO_2$ and $SiO_2$ in evaporating aerosol droplets. Poly styrene latex (PSL) particles were employed as a template of porous particles. Flowrate of dispersion gas, weight ratio of $TiO_2/SiO_2$ and $SiO_2$ concentration in the precursor, and PSL size were chosen as process variables. The morphology, crystal structure, chemical bonding, and pore size distribution were analyzed by FE-SEM, XRD, FT-IR, BET. The morphology of porous $TiO_2-SiO_2$ particles was spherical and the average particle size range were from 1 to $10{\mu}m$. The particles were composed of meso and macro pores. The average particle diameter and pore volume of the as prepared particles were dependant on process variables. It was found that UV-Vis absorption of the porous particles was comparable with pure $TiO_2$ nanoparticles even though $TiO_2/SiO_2$ ratio is low in the porous particles.

P형 FeSi2의 열전물성에 미치는 입자크기 및 첨가물 영향 (The Effect of Particle Size and Additives on the Thermoelectric Properties of P-type FeSi2)

  • 배철훈
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.1883-1889
    • /
    • 2013
  • Fe-Si계 합금은 우주탐사용으로 응용되고 있는 Si-Ge합금보다는 낮은 성능지수를 나타내지만 원료가 풍부하여 저가이고, 제조가 간단하며, $800^{\circ}C$까지 사용가능한 중고온용 열전발전재료이다. 본 연구에서는 고주파 진공유도로를 이용해서 제조한 p형 $FeSi_2$의 열전물성에 미치는 입자크기 및 첨가물 영향에 대해 조사하였다. 조성입자크기가 작을수록 소결밀도 증가와 함께 입자와 입자간의 연결성 향상에 의해 도전율이 증가하였다. Seebeck 계수는 600~800K에서 최고값을 나타내었고, 잔존하는 ${\varepsilon}$-FeSi 금속전도상에 의해 약간 감소하였다. $Fe_2O_3$$Fe_3O_4$를 첨가한 경우, 잔존 금속전도상 및 Si 결핍양 증가에 의해 도전율은 증가하였고 Seebeck 계수는 감소하였다. 반면에 $SiO_2$를 첨가한 경우에는 도전율과 Seebeck 계수 모두 상승하였다.

Effects of Matrix Material Particle Size on Mullite Whisker Growth

  • Hwang, Jinsung;Choe, Songyul
    • 한국재료학회지
    • /
    • 제31권6호
    • /
    • pp.313-319
    • /
    • 2021
  • Understanding of effects of changes in the particle size of the matrix material on the mullite whisker growth during the production of porous mullite is crucial for better design of new porous ceramics materials in different applications. Commercially, raw materials such as Al2O3/SiO2 and Al(OH)3/SiO2 are used as starting materials, while AlF3 is added to fabricate porous mullite through reaction sintering process. When Al2O3 is used as a starting material, a porous microstructure can be identified, but a more developed needle shaped microstructure is identified in the specimen using Al(OH)3, which has excellent reactivity. The specimen using Al2O3/SiO2 composite powder does not undergo mulliteization even at 1,400 ℃, but the specimen using the Al(OH)3/SiO2 composite powder had already formed complete mullite whiskers from the particle size specimen milled for 3 h at 1,100 ℃. As a result, the change in sintering temperature does not significantly affect formation of microstructures. As the particle size of the matrix materials, Al2O3 and Al(OH)3, decreases, the porosity tends to decrease. In the case of the Al(OH)3/SiO2 composite powder, the highest porosity obtained is 75 % when the particle size passes through a milling time of 3 h. The smaller the particle size of Al(OH)3 is and the more the long/short ratio of the mullite whisker phase decreases, the higher the density becomes.

화염중 발생하는 $SiO_2/TiO_2$ 다성분입자의 조성특성에 관한 실험적 연구 (An Experimental Study on Composition Characteristics of $SiO_2/TiO_2$ Multicomponent Particle in Coflow Diffusion Flame)

  • 김태오;서정수;최만수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.441-446
    • /
    • 2000
  • Chemical compositions of monodisperse $SiO_2/TiO_2$ multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. $SiO_2/TiO_2$ multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP (titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor theoretically, flow rate of carrier gas $N_2$ was fixed at 0.61pm for TTIP, at 0.11pm for TEOS. In situ sampling probe was used to supply particles into differential mobility analyzer(DMA) which was calibrated with using commercial DMA(TSI 3071A) and classifying monodisperse multicomponent particles. Classified particles were collected with electrophoretic collector. The distributions of composition from particle to particle were determined using EDS (energy dispersive spectrometry) coupled with TEM (transmission electron microscope). The chemical (atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the atomic composition of $SiO_2$ decreased with the height from burner surface and the composition of $SiO_2$ and $TiO_2$ approached to the value of 1 to 1 in far downstream. It is also found that the composition of $SiO_2$ decreases as the mobility diameter of aggregate increases.

  • PDF

플라즈마 용사에 의한 AlSi-Al$_2$O$_3$ 복합재료 코팅층의 미세조직 및 마찰.마모특성 (Microstructure and Tribological Characteristics of AlSi-Al$_2$O$_3$ Composite Coating Prepared by Plasma Spray)

  • 민준원;유승을;김영정;서동수
    • Journal of Welding and Joining
    • /
    • 제22권5호
    • /
    • pp.46-52
    • /
    • 2004
  • AlSi-Al$_2$O$_3$ composite layer was prepared by plasma spray on steel substrate. The composite powder for plasma spray was prepared by simple mechanical blending. The wear resistance of the composite layers and matrix aluminum alloy were performed in terms of size distribution of ceramic particles. Friction coefficients of AlSi were decreased with incorporation of $Al_2$O$_3$. The tribological properties of coated layers were affected by the size of incorporated $Al_2$O$_3$ particle. The reinforcement of $Al_2$O$_3$ particle into aluminum alloy matrix decreased the friction coefficient as well as wear loss.

반응로내 전기-수력학적 분사에 의한 비응집 초미세 SiO$_2$ 입자 합성과 특성 (Characteristics of Ultrafine SiO$_2$Particle Synthesized by Electro-Hydrodynamic Spray Injection in a Furnace)

  • 윤진욱;양태훈;안강호;최만수
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.660-665
    • /
    • 2001
  • Ultrafine particles have been widely used in many high technology industrial areas. The spherical nonagglomerated and uniform nanometer-size SiO$_2$particles are synthesized by the direct injection of TEOS(Tetraethyorthosilicate) using electro-hydrodynamic spraying method. Electro-hydrodynamic spraying can generate submicron-size TEOS droplets having high electric charges by applying a high electric field between the liquid injection nozzle and the reaction tube. These TEOS droplets are evaporated, and thermally decomposed or oxidized to produce nanometresized SiO$_2$particles in the reaction tube. Spherical, nonagglomerated and ultrafine particles are generated in various conditions and examined by using SEM and SMPS. As the total gas flow rate in the furnace changes from 1.5 lpm, the mean diameter of SiO$_2$particle decreases from 120 nm to 68 nm. The synthesized particle charging fractions are also investigated.

솔-젤 공정으로 제조된 SiO2-C 복합 전구체를 사용하여 열탄소환원법에 의한 β-SiC 분말 합성에 금속 Si 첨가가 미치는 영향 (Effects of Metallic Silicon on the Synthsis of β-SiC Powders by a Carbothermal Reduction Using SiO2-C Hybrid Precursor Fabricated by a Sol-gel Process)

  • 조영철;염미래;윤성일;조경선;박상환
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.402-409
    • /
    • 2013
  • The objective of this study was to develop a synthesis process for ${\beta}$-SiC powders to reduce the synthesis temperature and to control the particle size and to prevent particle agglomeration of the synthesized ${\beta}$-SiC powders. A phenol resin and TEOS were used as the starting materials for the carbon and Si sources, respectively. $SiO_2$-C hybrid precursors with various C/Si mole ratios were fabricated using a conventional sol-gel process. ${\beta}$-SiC powders were synthesized by a carbothermal reduction process using $SiO_2$-C hybrid precursors with various C/Si mole ratios (1.6 ~ 2.5) fabricated using a sol-gel process. In this study, the effects of excess carbon and the addition of Si powders to the $SiO_2$-C hybrid precursor on the synthesis temperature and particle size of ${\beta}$-SiC were examined. It was found that the addition of metallic Si powders to the $SiO_2$/C hybrid precursor with excess carbon reduced the synthesis temperature of the ${\beta}$-SiC powders to as low as $1300^{\circ}C$. The synthesis temperature for ${\beta}$-SiC appeared to be reduced with an increase of the C/Si mole ratio in the $SiO_2$-C hybrid precursor by a direct carburization reaction between Si and excess carbon.

Nb/MoSi2 접합재료의 계면 수정 및 특성 (Interfacial Moderation and Characterization of Nb/MoSi2 Bonding Materials)

  • 이상필;윤한기
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1132-1137
    • /
    • 2003
  • This study dealt with the suppression of interfacial reaction between Nb and MoSi$_2$ for the fabrication of high toughness Nb/MoSi$_2$ laminate composites, based on the results of a thermodynamical estimation. Especially, the effect of ZrO$_2$ particle on the interfacial reaction of Nb/MoSi$_2$ bonding materials has been examined. Nb/MoSi$_2$ bonding materials have been successfully fabricated by alternatively stacking matrix mixtures and Nb sheets and hot pressing in the graphite mould. The addition of ZrO$_2$ particle to MoSi$_2$ matrix is obviously effective for promoting both the interfacial reaction suppression and the sintered density of Nb/MoSi$_2$ bonding materials, since it is caused by the formation of ZrSiO$_4$ in the MoSi$_2$-ZrO$_2$ matrix mixture. The interfacial shear strength of Nb/MoSi$_2$ bonding materials also decreases with the reduction of interfacial reaction layer associated with the content of ZrO$_2$ particle and the fabrication temperature.

Oxidation Behavior of Oxide Particle Spray-deposited Mo-Si-B Alloys

  • Park, J.S.;Kim, J.M.;Kim, H.Y.;Perepezko, J.H.
    • 열처리공학회지
    • /
    • 제20권6호
    • /
    • pp.299-305
    • /
    • 2007
  • The effect of spray deposition of oxide particles on oxidation behaviors of as-cast Mo-14.2Si-9.6B (at%) alloys at $1200^{\circ}C$ up to for 100 hrs has been investigated. Various oxide powders are utilized to make coatings by spray deposition, including $SiO_2,\;TiO_2,\;ZrO_2,\;HfO_2$ and $La_2O_3$. It is demonstrated that the oxidation resistance of the cast Mo-Si-B alloy can be significantly improved by coating with those oxide particles. The growth of the oxide layer is reduced for the oxide particle coated Mo-Si-B alloy. Especially, for the alloy with $ZrO_2$ coating, the thickness of oxide layer becomes only one fifth of that of uncoated alloys when exposed to in air for 100 hrs. The reduction of oxide scale growth of the cast Mo-Si-B alloy due to oxide particle coatings are discussed in terms of the change of viscosity of glassy oxide phases that form during oxidation at high temperature.

Low-Z particle EPMA 단일입자 분석법을 이용한 지하철 승강장에서 미세입자 특성 분석 (Characterization of Aerosols Collected at a Subway Station Platform Using Low-Z Particle Electron Probe X-ray Microanalysis)

  • 황희진;오미정;강선이;김혜경;노철언
    • 한국대기환경학회지
    • /
    • 제21권6호
    • /
    • pp.639-647
    • /
    • 2005
  • A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (EPMA), was applied to characterize samples collected at a subway station and ambient samples in Seoul. According to their chemical composition, many distinctive particle types were identified. For samples collected at the subway station platform, the major chemical species are carbon-rich, organic, aluminosilicates (AlSi), AlSi/C, AlSi/$CaCO_{3},\;CaCO_{3},\;SiO_{2},\;and\;Fe_{2}O_{3}$. For outdoor samples, carbon-rich, organic, AlSi, $CaCO_{3},\;SiO_{2},\;NaNO_{3},\;(Na,Mg)NO_{3},\;Na(CO_{3},NO_{3},SO_{4}),\;and\;(NH_{4})_2SO_4$, are abundantly encountered. Samples collected at the subway station show very high contents of $Fe_{2}O_{3}$, both in coarse and fine fractions, which come from brake block, subway train wheel, electric contact materials, etc. It is demonstrated that the single-particle characterization using this low-Z particle EPMA technique provided detailed information on various types of chemical species in indoor and outdoor samples.