• Title/Summary/Keyword: $SiN_{x}$

Search Result 944, Processing Time 0.036 seconds

A Study on the Structure and Thermal Property of $Co^{2+}$-Exchanged Zeolite A

  • Jong-Yul Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.265-270
    • /
    • 1991
  • Theoretical calculations on the stabilization energies of framework atoms in hydrolyses Co(Ⅱ )-exchanged zeolite A were made using some potential energy functions and optimization program. The protons which are produced by hydrolysis of $[Co(H_2O)_n]^{2+}$ ion in large cavity showed a tendency to attack the framework oxygen atom O(1) preferentially, and the oxygen atom O(4) within OH- ion was coordinated at Al atom. The weakness of bonds between T(Si, Al) and oxygen by attack of proton and too large coordination number around small aluminum atom will make the framework of Co(Ⅱ)-exchanged zeolite A more unstable. The stabilization energy of $Co_4Na_4$-A framework (- 361.57 kcal/mol) was less than that of thermally stable zeolite A($Na_{12-}$A: - 419.68 kcal/mol) and greater than that of extremely unstable Ba(Ⅱ)-exchanged zeolite A($Ba_{6-}$A: - 324.01 kcal/mol). All the data of powder X-ray diffraction, infrared and Raman spectroscopy of Co(Ⅱ)-exchanged zeolite A showed the evidence of instability of its framework in agreement with the theoretical calculation. Three different groups of water molecules are found in hydrated Co(Ⅱ )-exchanged zeolite A; W(Ⅰ) group of water molecules having only hydrogen-bonds, W(Ⅱ) group water coordinated to $Na^+$ ion, ans W(Ⅲ) group water coordinated to Co(Ⅱ) ion. The averaged interaction energy of each water group shows the decreasing order of W(Ⅲ)>W(Ⅱ)>W(Ⅰ).

Analysis of Correlation Between Silicon Solar Cell Fabrication Steps and Possible Degradation (실리콘 태양전지 제조공정과 열화의 상관관계 분석)

  • Yewon Cha;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.16-22
    • /
    • 2023
  • In a solar cell, degradation refers to the decrease in performance parameters caused by defects originated due to various causes. During the fabrication process of solar cells, degradation is generally related to the processes such as passivation or firing. There exist sources of many types of degradation; however, the exact cause of Light and elevated Temperature Induced Degradation (LeTID) is yet to be determined. It is reported that the degradation and the regeneration occur due to the recombination of hydrogen and an arbitrary substance. In this paper, we report the deposition of Al2O3 and SiNX on silicon wafers used in the Passivated Emitter and Rear Contact (PERC) solar structure and its degradation pattern. A higher degradation rate was observed in the sample with single layer of Al2O3 only, which indicates that the degradation is affected by the presence or the absence of a passivation thin film. In order to alleviate the degradation, optimization of different steps should be carried out in consideration of degradation in the solar cell fabrication process.

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

  • Kim Kyoung-Cheol;Kim Si-Wouk;Kim Myong-Jun;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.52-59
    • /
    • 2005
  • The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.

Preparation of Hafnium Oxide Thin Films grown by Atomic Layer Deposition (원자층 증착법으로 성장한 HfO2 박막의 제조)

  • Kim Hie-Chul;Kim Min-Wan;Kim Hyung-Su;Kim Hyug-Jong;Sohn Woo-Keun;Jeong Bong-Kyo;Kim Suk-Whan;Lee Sang-Woo;Choi Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • The growth of hafnium oxide thin films by atomic layer deposition was investigated in the temperature range of $175-350^{\circ}C$ using $Hf[N(CH_3)_2]_4\;and\;O_2$ as precursors. A self-limiting growth of $0.6\AA/cycle$ was achieved at the substrate temperature of $240-280^{\circ}C$. The films were amorphous and very smooth (0.76-0.80 nm) as examined by X-ray diffractometer and atomic force microscopy, respectively. X-ray photoelectron spectroscopy analysis showed that the films grown at $300^{\circ}C$ was almost stoichiometric. Electrical measurements performed on $MoW/HfO_2$(20 nm)/Si MOS structures exhibited high dielectric constant$(\~17)$ and a remarkably low leakage current density of at an applied field of $1.5-6.2\times10^{-7}A/cm^2$ MV/cm, probably due to the stoichiometry of the films.

Relationship between Temperature and Egg Development of Nannophya pygmaea Rambur (Odonata: Libellulidae), an Endangered Dragonfly in Korea (한국의 멸종위기종인 꼬마잠자리(Nannophya pygmaea Rambur: 잠자리과, 잠자리목) 알의 발육과 온도의 관계)

  • Kim, Dong-Gun;Hwang, Jeong-Mi;Yoon, Tae-Joong;Bae, Yeon-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.292-296
    • /
    • 2009
  • This study was conducted to estimate relationship between temperature and egg development of Nannophya pygmaea, an endangerd dragonfly species in Korea, using eight different temperature conditions (17, 20, 22, 25, 28, 30, 33, and $36^{\circ}C$). Eggs of N. pygmaea were collected from female adults inhabited a small wetland in Mungyeong-si, Gyeongsangbuk-do, Korea, in June 2007. As a result, hatching rates were 2.86, 17.09, 24.32, 39.67, 34.43, 40.57, 44.79, and 1.75% at 17, 20, 22, 25, 28, 30, 33, and $36^{\circ}C$, respectively. The nonlinear model of the temperature related to egg development was well fit to the modified Sharpe and DeMichele model. The derived lower developmental threshold temperature for egg hatching was $14.02^{\circ}C$(y=0.005988x-0.084, $r^2$=0.99), and the derived optimal development temperature was $30{\sim}35^{\circ}C$.

Thermal and Physicochemical Characteristics of Solid Fuel Extruded with Cattle Feedlot Manure (우분 성형 고형연료의 열 및 물리화학적 특성)

  • Lee, Gwi-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.64-68
    • /
    • 2010
  • Cattle feedlot manure could be used effectively as the solid fuel for heating of agricultural facilities. Therefore, this study was carried out to investigate the thermal and physicochemical characteristics of solid fuel extruded with cattle feedlot manure. Calorific values of the solid fuel extruded with cattle feedlot manure, which was dried to the moisture contents of 0.0% (w.b) and 35.0% (w.b,) were 14,906 kJ/kg and 11,797 kJ/kg, respectively. Calorific value of extruded solid fuel was linearly decreased with the increase of moisture content. The first, second, and third reaction point during thermal pyrolysis of solid fuels extruded with cattle feedlot manure was investigated as $108.1^{\circ}C$, $312.2^{\circ}C$, and $459.4^{\circ}C$, respectively. The maximum reaction point was presented at the temperature of $312.2^{\circ}C$. Weight loss of extruded cattle feedlot manure during thermal pyrolysis until $600^{\circ}C$ was reached to about 60%. Volume decrease of initial extruded cattle feedlot manure was 61% during drying for the use as solid fuel. Maximum strength of extruded cattle feedlot manure, which was dried as the moisture content of 10% (w.b.) was 41,9150 N/$m^2$. Ignition gas analysis of extruded cattle feedlot manure presented that it has small amount of $NO_x$ and $SO_x$. It was shown that dried cattle feedlot manure had main components of C and O including small amount of Mg, Si, and Ca.

Morphological Analysis of Patterns of Deformities and Multiple Symptoms in Cultured Blackhead Seabream Acanthopagrus schlegeli Juveniles (인공종묘 감성돔(Acanthopagrus schlegeli) 치어에서 발생하는 형태이상의 종류 및 다발성증상에 대한 형태학적 분석)

  • Kim, Yang-Su;Go, Hyun-Jung;Lee, Si-Woo;Jeong, Gwan-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.474-482
    • /
    • 2015
  • This study aims to investigate the patterns and incidence rates of morphological deformities during artificial fingerling production of blackhead seabream (BSB, Acanthopagrus schlegeli) juveniles by visual and soft X-ray observations of BSB juveniles (n=881) collected from four industrial hatcheries. Using both methods, we observed seven types of external deformity ($11.2{\pm}4.4%$) and eight types of skeletal deformity ($53.4{\pm}5.1%$). Lordosis occurred in all hatcheries with the highest frequency and the mean frequency was $13.1{\pm}4.4%$ (24.5% in total abnormal) by soft X-ray. Although they had a similar standard length (SL), juveniles with lordosis had a significantly lower condition factor and body weight than normally developed juveniles (P<0.05); normal distribution curves of histogram of body proportions, i.e., body height (BH)/head length (HL) and trunk (=SL-HL)/BH, indicated differences between normally developed juveniles and those with lordosis. In addition, 59% of juveniles with lordosis had vertebral curvature of less than $20^{\circ}$, generally at the $17^{th}$ vertebrae. It is expected that the above results will be used as basic data necessary for determining the cause of lordosis and for developing techniques to prevent this symptom in the fingering production industry of BSB juveniles.

Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag

  • Alawad, Omer Abdalla;Alhozaimy, Abdulrahman;Jaafar, Mohd Saleh;Aziz, Farah Nora Abdul;Al-Negheimish, Abdulaziz
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.381-390
    • /
    • 2015
  • Investigating the microstructure of hardened cement mixtures with the aid of advanced technology will help the concrete industry to develop appropriate binders for durable building materials. In this paper, morphological, mineralogical and thermogravimetric analyses of autoclave-cured mixtures incorporating ground dune sand and ground granulated blast furnace slag as partial cementing materials were investigated. The microstructure analyses of hydrated products were conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential thermal analysis (DTA), thermo-graphic analysis (TGA) and X-ray diffraction (XRD). The SEM and EDX results demonstrated the formation of thin plate-like calcium silicate hydrate plates and a compacted microstructure. The DTA and TGA analyses revealed that the calcium hydroxide generated from the hydration binder materials was consumed during the secondary pozzolanic reaction. Residual crystalline silica was observed from the XRD analysis of all of the blended mixtures, indicating the presence of excess silica. A good correlation was observed between the compressive strength of the blended mixtures and the CaO/$SiO_2$ ratio of the binder materials.

PLD 법으로 증착된 IZO 박막의 Indium 양에 따른 배향성 변화 연구

  • Jang, Bo-Ra;Lee, Ju-Yeong;Lee, Jong-Hun;Lee, Da-Jeong;Kim, Hong-Seung;Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Bae, Gi-Yeol;Lee, Won-Jae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.59-59
    • /
    • 2010
  • ZnO는 II-VI 족 화합물 반도체로써 상온에서 큰 엑시톤 결합에너지 (~60 meV) 를 가지며 밴드갭이 3.37 eV인 직접 천이형 반도체로 잘 알려진 물질이다. 이러한 ZnO의 물리적 특성은 광학소자로 상용화된 GaN와 유사하기 때문에 LED나 LD등의 광 소자 재료로 주목 받고 있다. 또한 ZnO는 3족 원소 (In, Ga, Al)를 도핑 함으로써 전기적 특성 제어가 가능한 장점을 가지고 있다. 본 연구는 펄스레이저 증착법 (Pulsed Laser Deposition)을 이용하여 Si (111) 기판 위에 ZnO:In 박막을 성장 시켰으며, 도핑된 indium 양에 따른 ZnO 박막의 배향성 변화를 관찰 하였다. X-선 회절 분석법 (X-ray diffraction), 탐침형 원자현미경 (Atomic Force Microscope) 그리고 투과전자 현미경 (Transmission Electron Microscope)을 측정하였다. XRD 측정 결과 un-doped ZnO 박막은 (002) 방향으로 c-축 우선성장 하였다. 그러나 ZnO 박막내의 Indium 양이 증가 할수록 (002) 방향에서 (101), (102), (103) 등의 (101) 방향으로 성장이 변화 하였으며 5 at.% 이상에서는 (100) 방향의 성장이 관찰 되었다. TEM 측정 결과 un-doped ZnO 박막은 columnar 구조로 성장 되었으나, Indium 양이 증가할수록 column의 size가 감소하며, 5 at.% 이상에서 columnar 구조 성장이 거의 관찰되지 않는다. AFM 결과에서는 Indium 양이 증가 할수록 박막의 표면거칠기와 결정립 크기가 감소하였다.

  • PDF

Temperature dependence of optical energy gaps and thermodynamic function of $Zn_{4}SnSe_{6}$ and $Zn_{4}SnSe_{6}:Co^{2+}$ single crystals ($Zn_{4}SnSe_{6}$$Zn_{4}SnSe_{6}:Co^{2+}$ 단결정에서 광학적 에너지 띠 및 열역학적 함수의 온도의존성 연구)

  • Kim, D.T.;Kim, N.O.;Choi, Y.I.;Kim, B.C.;Kim, H.G.;Hyun, S.C.;Kim, B.I.;Song, C.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.25-30
    • /
    • 2002
  • The ternary semiconducting compounds of the $A_{4}BX_{6}$(A=Cd, Zn, Hg; B=Si, Sn, Ge; X=S, Se, Te) type exhibit strong fluorescence and high photosensitivity in the visible and near infrared ranges, so these are supposed to be materials applicable to photoelectrical devices. These materials were synthesized and single crystals were first grown by Nitsche, who identified the crystal structure of the single crystals. In this paper. author describe the undoped and $Co^{2+}$-doped $Zn_{4}SnSe_{6}$ single crystals were grown by the chemical transport reaction(CTR) method using iodine of $6mg/cm^{3}$ as a transport agent. For the crystal. growth, the temperature gradient of the CTR furnace was kep at $700^{\circ}C$ for the source aone and at $820^{\circ}C$ for the growth zone for 7-days. It was found from the analysis of x-ray diffraction that undoped and $Co^{2+}$-doped $Zn_{4}SnSe_{6}$ compounds have a monoclinic structure. The optical absorption spectra obtained near the fundamental absorption edge showed that these compounds have a direct energy gaps. These temperature dependence of the optical energy gap were closely investigated over the temperature range 10[K]~300[K]

  • PDF