• Title/Summary/Keyword: $SiC_f/SiC$ composites

Search Result 69, Processing Time 0.026 seconds

High Temeprature Strength Property of Continuous SiC Fiber Reinforced SiC Matrix Composites (SiC 장섬유 강화 SiC 기지 복합재료의 고온강도 특성)

  • Shin, Yun-Seok;Lee, Sang-Pil;Lee, Jin-Kyung;Lee, Joon-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.102-105
    • /
    • 2005
  • The mechanical properties of $SiC_f/SiC$ composites reinforced with continuous SiC fiber have been investigated in conjunction with the detailed analysis of their microstructures. Especially, the effect of test temperature on the characterization of $SiC_f/SiC$ composites was examined. In this composite system, a braiding Hi-Nicalon SiC fibric was selected as a reinforcement. $SiC_f/SiC$ composites have been fabricated by the reaction sintering process, using the complex matrix slurry with a constant composition ratio of SiC and C particles. The characterization of $RS-SiC_f/SiC$ composites was investigated by means of SEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, the high temperature applicability of $RS-SiC_f/SiC$ composites was discussed.

  • PDF

Fracture Properties of Carbon Coated LPS-SiCf/SiC Composites (액상소결을 이용한 탄소코팅 SiCf/SiC복합재료의 파괴특성)

  • Kim, Sung-Won;Lee, Moon-Hee;Hwang, Seung-Kuk;Lee, Sang-Pill
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Mechanical properties of carbon coated $SiC_f/SiC$ composites have been investigated, in conjunction with a detailed analysis of microstructure. Especially, the fracture behavior of $SiC_f/SiC$ composites by the induction of carbon coating layers has been examined. The matrix region of $SiC_f/SiC$ composites with ultra-fine SiC powders were consolidated by a liquid phase sintering (LPS) process, using a sintering additive of $Al_2O_3-Y_2O_3$ powder compound. In this composite, plain and satin- woven Tyranno SA fabrics were also utilized as a reinforcing material. A carbon interfacial layer was coated around satin-woven SiC fabrics. The characterization of LPS-$SiC_f/SiC$ composites was investigated by means of SEM and three point bending test.

Fracture Behaviors and Mechanical Properties of SiCf/SiC Composites Prepared by the Whisker Growing Assisted CVI Process (Whisker Growing Assisted 화학침착 공정으로 제조된 SiCf/SiC 복합체의 파괴거동과 기계강도 평가)

  • Kang, Seok-Min;Kim, Weon-Ju;Yoon, Soon-Gil;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.484-487
    • /
    • 2009
  • $SiC_f$/SiC composites with whiskers and pyrolytic carbon (PyC) coated whiskers in the matrix were fabricated for enhancement of the fracture behaviors by the whisker growing assisted chemical vapor infiltration (WA-CVI) process, respectively. $SiC_f$/SiC composites were also prepared by the conventional CVI process as reference material. The mechanical properties and fracture behaviors were analyzed by comparison of the two types of composites prepared by WA-CVI and conventional CVI. The densities of $SiC_f$/SiC composites were in the range of $2.6{\sim}2.65g/cm^3$. The flexural strengths of composite with whiskers and with those coated by PyC were 650 MPa and 600 MPa, respectively. The tensile strength of composites with whiskers was ${\sim}285$ MPa.

Characteristics of Elastic Wave Generated by Wear and Friction of SiCf/SiC Composites (SiCf/SiC 복합재의 마모 및 마찰에 의해 발생된 탄성파 특성)

  • Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The wear characteristics of $SiC_f$/SiC composites were evaluated according to the alignment direction of the fibers, and the elastic wave-generated friction was detected and analyzed in wearing. The friction coefficient and wear loss were similar in the longitudinal and the transverse direction of the fibers. However, these values were lower in the vertical direction of the fibers because of the brittle nature of the fiber. The friction coefficient and the wear loss were directly proportional to each other. The dominant frequencies were 58.6 kHz for monolithic SiC and 117.2 and 136.7 kHz for $SiC_f$/SiC composites, respectively.

Microstructure and Strength Property of Liquid Phase Sintered $SiC_f$/SiC Composites (액상소결 $SiC_f$/SiC 복합재료의 미세조직 및 강도특성)

  • Lee, Moon-Hee;Cho, Kyung-Seo;Lee, Sang-Pill;Lee, Jin-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.234-238
    • /
    • 2008
  • The efficiency of fiber reinforced CMC(ceramic matrix composite) on the SiC materials have been investigated, in conjunction with the fabrication process by liquid phase sintering and the characterization. LPS-$SiC_f$/SiC composites was studied with the detailed analysis such as the microstructure, sintered density, flexural strength and fracture behavior. The applicability of carbon interfacial layer has been also investigated in the LPS process. Submicron SiC powder with the constant total amount and composition ratio of $Al_2O_3,\;Y_2O_3$ as sintering additives was used in order to promote the performance of the SiC matrix material. LPS-$SiC_f$/SiC composites were fabricated with hot press under the sintering temperature and applied pressure of $1820^{\circ}C$ and 20MPa for 1hr. The typical property of monolithic LPS-SiC materials was compared with LPS-$SiC_f$/SiC composites.

  • PDF

Densification of Cf/SiC Composite Using PIP with Adding of Cyclohexene (Cyclohexene을 첨가한 PIP 공정 사용 Cf/SiC 복합재의 고밀도화)

  • Bae, Jin-Cheol;Cho, Kwang-Youn;Kim, Jun-Il;Im, Dong-Won;Park, Jong-Kyu;Lee, Man-Young;Lee, Jae-Yeol
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.322-327
    • /
    • 2013
  • Carbon fiber-reinforced SiC matrix composites have good oxidation resistance and thermal shock resistance. These properties have allowed the composites to be applied to high-temperature structures. In this study, $C_f/SiC$ composites were fabricated via precursor infiltration and pyrolysis (PIP) process, including liquid phase infiltration and chemical vapor curing using cyclohexene. The final $C_f/SiC$ composites, which have gone through the PIP process five times, showed a density of $1.79g/cm^3$, as compared to a density of $0.43g/cm^3$ for pre-densified bare carbon fiber preform. As for the oxidation resistance characteristics, the weight of $C_f/SiC$ composite was maintained at 81% at $1400^{\circ}C$ in air for 6 hours. Chemical vapor curing (CVC) using cyclohexene has shown to be an effective method to achieve high densification, leading to increased oxidation resistance.

Fracture Behaviors of SiCf/SiC Composites Prepared by Hybrid Processes of CVI and PIP (화학침착법과 고분자함침 열분해법의 복합공정으로 제조한 SiCf/SiC 복합체의 제조 공정에 따른 파괴거동)

  • Park, Ji Yeon;Han, Jangwon;Kim, Daejong;Kim, Weon-Ju;Lee, Sea Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.430-434
    • /
    • 2014
  • $SiC_f$/SiC composites were prepared using the hybrid process of chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP). Before the application of PIP, partially matrix-filled preform composites with different densities were fabricated by control of chemical vapor infiltration time and temperature. The changes of the final density of the $SiC_f$/SiC composites had a tendency similar to that of preform composites partially filled by CVI. Composites with lower density after the CVI process had a larger increment of density during the PIP process. Three types of microstructures were observed on the fractured surface of the composite: 1) well pulled-out fibers and lower density, 2) slightly pulled-out fibers and higher density, and 3) only bulk SiC. The different fractions and distributions of the microstructures could have an effect on the mechanical properties of the composites. In this study, $SiC_f$/SiC composites prepared using a hybrid process of CVI and PIP had density values in the range of $1.05{\sim}1.44g/cm^3$, tensile strength values in the range of 76.4 ~ 130.7 MPa, and fracture toughness values in the range of $11.2{\sim}13.5MPa{\cdot}m^{1/2}$.

Fabrication of SiCf/SiC Composites using an Electrophoretic Deposition

  • Lee, Jong-Hyun;Gil, Gun-Young;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.447-451
    • /
    • 2009
  • Continuous SiC fiber-reinforced SiC composites ($SiC_f$/SiC) were fabricated by electrophoretic deposition (EPD). Nine types of slurries with different powder contents, binder resin amounts and slurry pH were deposited on Tyranno$^{TM}$-SA fabrics by EPD at 135 V for ten minutes to determine the optimal conditions. Further EPD using the optimum slurry conditions was performed on fabrics with four different pyrolitic carbon (PyC) thicknesses. The density of the hot-pressed composites decreased with increasing PyC thickness due to the difficulty of infiltrating the slurry into the narrow gaps between the fibers. On the other hand, the mechanical strength increased with increasing PyC thickness despite the decrease in density, which was explained by the enhanced crack deflection with increasing PyC thickness. The $SiC_f$/SiC composites showed the highest density and flexural strength of 94% and 342 MPa, respectively, showing EPD as a feasible method for dense $SiC_f$/SiC fabrication.

FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

  • Kim, Weon-Ju;Kim, Daejong;Park, Ji Yeon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.565-572
    • /
    • 2013
  • The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade $SiC_f/SiC$ composites are briefly reviewed. A CVI-processed $SiC_f/SiC$ composite with a PyC or $(PyC-SiC)_n$ interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

Bending Strength and Crack Healing of SiCf/SiC Composite Material (SiCf/SiC 복합재료의 굽힘 강도 특성 및 균열 치유 효과)

  • Ahn, Seok-Hwan;Do, Jae-Yoon;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.94-102
    • /
    • 2013
  • Manufactured $SiC_f/SiC$ composites by NITE method was investigated fracture characteristics according to the size of the surface crack. Coated surface crack with a $SiO_2$ colloid in several ways was evaluating the possibility of healing. The strength of CCS and UCS is 313 and 230MPa, respectively and it is about 1/3 of the SPS. Bending strength of $SiC_f/SiC$ composites has no effect with the pre-crack size to the critical crack size. $SiC_f/SiC$ composites can not generate large amount of $SiO_2$ oxides to the bottom of crack, and is only generated randomly on surfaces, and can not contribute to the recovery of bending strength.