• Title/Summary/Keyword: $S_3$-algebra

Search Result 135, Processing Time 0.031 seconds

Flipped Learning teaching model design and application for the University's "Linear Algebra" ('선형대수학' 플립드러닝(Flipped Learning) 강의 모델 설계 및 적용)

  • Park, Kyung-Eun;Lee, Sang-Gu
    • Communications of Mathematical Education
    • /
    • v.30 no.1
    • /
    • pp.1-22
    • /
    • 2016
  • We had a full scale of literature survey and case survey of mathematics Flipped Learning class models. The purpose of this study is to design and adopt a Flipped Learning 'Linear Algebra' class model that fis our need. We applied our new model to 30 students at S University. Then we analyzed the activities and performance of students in this course. Our Flipped Learning 'Linear Algebra' teaching model is followed in 3 stages : The first stage involved the students viewing an online lecture as homework and participating free question-answer by themselves on Q&A before class, the second stage involved in-class learning which researcher solved the students' Q&A and highlighted the main ideas through the Point-Lecture, the third stage involved the students participating more advanced topic by themselves on Q&A and researcher (or peers) finalizing students' Q&A. According to the survey, the teaching model made a certain contribution not only to increase students' participation and interest, but also to improve their communication skill and self-directed learning skill in all classes and online. We used the Purposive Sampling from the obtained data. For the research's validity and reliability, we used the Content Validity and the Alternate-Form Method. We found several meaningful output from this analysis.

METHODS FOR ITERATIVE DISENTANGLING IN FEYNMAN’S OPERATIONAL CALCULI : THE CASE OF TIME DEPENDENT NONCOMMUTING OPERATORS

  • Ahn, Byung-Moo
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.931-938
    • /
    • 2010
  • The disentangling map from the commutative algebra to the noncommutative algebra of operators is the essential operation of Feynman's operational calculus for noncommuting operators. Thus formulas which simplify this operation are meaningful to the subject. In a recent paper the procedure for "methods for iterative disentangling" has been established in the setting of Feynman's operational calculus for time independent operators $A_1$, $\cdots$, $A_n$ and associated probability measures${\mu}_1$, $\cdots$, ${\mu}_n$. The main purpose for this paper is to extend the procedure for methods for iterative disentangling to time dependent operators.

PDE-PRESERVING PROPERTIES

  • PETERSSON HENRIK
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.573-597
    • /
    • 2005
  • A continuous linear operator T, on the space of entire functions in d variables, is PDE-preserving for a given set $\mathbb{P}\;\subseteq\;\mathbb{C}|\xi_{1},\ldots,\xi_{d}|$ of polynomials if it maps every kernel-set ker P(D), $P\;{\in}\;\mathbb{P}$, invariantly. It is clear that the set $\mathbb{O}({\mathbb{P}})$ of PDE-preserving operators for $\mathbb{P}$ forms an algebra under composition. We study and link properties and structures on the operator side $\mathbb{O}({\mathbb{P}})$ versus the corresponding family $\mathbb{P}$ of polynomials. For our purposes, we introduce notions such as the PDE-preserving hull and basic sets for a given set $\mathbb{P}$ which, roughly, is the largest, respectively a minimal, collection of polynomials that generate all the PDE-preserving operators for $\mathbb{P}$. We also describe PDE-preserving operators via a kernel theorem. We apply Hilbert's Nullstellensatz.

JORDAN AUTOMORPHIC GENERATORS OF EUCLIDEAN JORDAN ALGEBRAS

  • Kim, Jung-Hwa;Lim, Yong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.507-528
    • /
    • 2006
  • In this paper we show that the Koecher's Jordan automorphic generators of one variable on an irreducible symmetric cone are enough to determine the elements of scalar multiple of the Jordan identity on the attached simple Euclidean Jordan algebra. Its various geometric, Jordan and Lie theoretic interpretations associated to the Cartan-Hadamard metric and Cartan decomposition of the linear automorphisms group of a symmetric cone are given with validity on infinite-dimensional spin factors

Instrumental Genesis of Computer Algebra System(CAS) in Mathematical Problem Solving among High School Students (고등학교 수학 문제해결에서 CAS의 도구발생)

  • Han, Se-Ho;Chang, Kyung-Yoon
    • School Mathematics
    • /
    • v.11 no.3
    • /
    • pp.527-546
    • /
    • 2009
  • This study was designed to gain insights into instrumental genesis process of CAS in Korean high school students and to explore its practical potentials in secondary mathematics education. Two activities, such as Concept-Centered Mathematics Activity based on CAS and Problem Solving Activities, were constructed and executed to 10th Grade seven students for twelve class hours. The finding on the students' activities are as follows : it is meaningful in mathematics education, especially in algebra education, in that the CAS based concept centered mathematics activity offers great opportunities to deal with high-qualified application problems. The problem solving activities based on the instrumented CAS may have an influence on the sequence of mathematics curriculum, e.g. the optimization problems may precede the calculus problems such as derivatives in high school. The results of this study to investigate the instrumental genesis of CAS in mathematical activities will give insights into the secondary mathematics curriculum to prepare the CAS in Korea.

  • PDF

The Embeddability of s1(n,C) Modules

  • Kim, Dong-Seok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.803-808
    • /
    • 2007
  • In present article, we consider the embeddability problems for finite dimensional irreducible modules over a complex simple Lie algebra L. For s1(n,C) modules, we determine when one can be embedded into the other if s1(n,C) modules are tensor products of fundamental modules.

  • PDF

A Process Algebra for Modeling Secure Movements of Distributed Mobile Processes (분산 이동 프로세스 이동의 안전성 모델링을 위한 프로세스 대수)

  • Choe, Yeongbok;Lee, Moonkun
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.314-326
    • /
    • 2016
  • Some process algebras were applied to enterprise business modelling for formal specification and verification. ${\pi}$-calculus and mobile ambient can be considered for the distributed and mobile, especially to represent the movements of distributed real-time business processes. However there are some limitations to model the movements: 1) ${\pi}$-calculus passes the name of port for indirect movements, and 2) mobile ambient uses ambient to synchronize asynchronous movements forcefully. As a solution to the limitations, this paper presents a new process algebra, called ${\delta}$-calculus, to specify direct and synchronous movements of business processes over geo-temporal space. Any violation of safety or security of the systems caused by the movements can be indicated by the properties of the movements: synchrony, priority and deadline. A tool, called SAVE, was developed on ADOxx metamodelling platform to demonstrate the concept.

A Study on the Teaching-Learning of Parameter Concept (매개변수 개념의 교수-학습에 관한 연구)

  • 김남희
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.3
    • /
    • pp.305-325
    • /
    • 2004
  • This study is on the teaching-learning of parameter concept in secondary school mathematics. In our school mathematics curriculum, parameter concept is explicitly presented at high school mathematics textbook. But student have difficulty in understanding parameter concept because this concept is implicitly used in the textbook from 7-grade mathematics. Moreover, it is true that mathematics teacher give a little attention to student's understanding of parameter con- cept. In this study, we analyzed concept definition of parameter and the extension of parameter on the basis of preceding research, our mathematical curriculum, mathematical dictionaries. After that, we concluded that parameter is explicitly called in t where x= f(t), y= g(t) and parameter is implicitly treated in the learning of relation between quantities in our mathematical curriculum. We pointed to the importance of parameter concept in the successful learning of school algebra. Specially, when the level of algebra is in the learning of relation between quantities, parameter is the key concept for understanding and representing of families of equations or functions. In mathematics class, students have opportunity to reflect that what the role of each variable(parameter, dependent variable, independent variable etc.) is, and where the information which determines it comes from. It is for mathematical communications as well as learning school algebra. Therefore, mathematics teacher's didactical attention is more needed to student have a good concept image of parameter before they learn explicitly its concept definition.

  • PDF

BIPOLAR FUZZY TRANSLATIONS IN BCK/BCI-ALGEBRAS

  • Jun, Young Bae;Kim, Hee Sik;Lee, Kyoung Ja
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.399-408
    • /
    • 2009
  • A bipolar fuzzy translation and a bipolar fuzzy S-extension of a bipolar fuzzy subalgebra in a BCK/BCI-algebra are introduced, and related properties are investigated.

  • PDF

The Analysis of Relationship between Error Types of Word Problems and Problem Solving Process in Algebra (대수 문장제의 오류 유형과 문제 해결의 관련성 분석)

  • Kim, Jin-Ho;Kim, Kyung-Mi;Kwean, Hyuk-Jin
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.599-624
    • /
    • 2009
  • The purpose of this study was to investigate the relationship between error types and Polya's problem solving process. For doing this, we selected 106 sophomore students in a middle school and gave them algebra word problem test. With this test, we analyzed the students' error types in solving algebra word problems. First, We analyzed students' errors in solving algebra word problems into the following six error types. The result showed that the rate of student's errors in each type is as follows: "misinterpreted language"(39.7%), "distorted theorem or solution"(38.2%), "technical error"(11.8%), "unverified solution"(7.4%), "misused data"(2.9%) and "logically invalid inference"(0%). Therefore, we found that the most of student's errors occur in "misinterpreted language" and "distorted theorem or solution" types. According to the analysis of the relationship between students' error types and Polya's problem-solving process, we found that students who made errors of "misinterpreted language" and "distorted theorem or solution" types had some problems in the stage of "understanding", "planning" and "looking back". Also those who made errors of "unverified solution" type showed some problems in "planing" and "looking back" steps. Finally, errors of "misused data" and "technical error" types were related in "carrying out" and "looking back" steps, respectively.

  • PDF