• Title/Summary/Keyword: $SO_2$ inflow

Search Result 143, Processing Time 0.029 seconds

Evaluation of the Impact on Surrounding Groundwater of Waterway Tunnel Excavation and Cofferdam Construction (터널 굴착 및 가물막이 시공에 따른 주변 지하수계 유동분석)

  • You, Youngkwon;Lim, Heuidae;Choi, Jaiwon;Eom, Sungill
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.5-15
    • /
    • 2014
  • This study is to quantitatively evaluate the impact on surrounding groundwater of waterway tunnel excavation and cofferdam construction in which A-dam and B-dam, so prediction of groundwater fluctuation and tunnel lining installation was studied. As a result, drawdown of groundwater level during tunnel excavation and cofferdam construction occurred about 3.58 m in the tunnel shaft. The initial condition of groundwater level recovered by up to 90 % was simulated after the completed the construction of the tunnel and lining installation. Groundwater inflow in the tunnel evaluated was analyzed to have exceeding water design criteria of the tunnel. The groundwater inflow is reduced to maximum $0.006m^3/min/km$ after lining installation done in the tunnel, so effect of lining installation was evaluated as 93 % or more. Drawdown of about 0.04~0.31 m occurs in the houses and temples analysis of groundwater system of the surrounding area from construction. Drawdown has occurred nearly by considering annual groundwater level fluctuation of National Groundwater Observation Network.

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

A Study on the Quality Improvement of Raw-Water Using Submerged Biofilter (생물막공정에 의한 상수원수의 수질개선에 관한 연구)

  • Lee, Soo-sik;Ahn, Seung-seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.81-94
    • /
    • 1999
  • This study aims at a proposal of the plan that can improve raw water quality by an experimental study using influent water of Nak-dong river, which has been used as raw water for drinking in U-city, through the establishment of the submerged biofilter process PILOT PLANT of media packing channel method. From the analysis of removal efficiency for each water quality item of the collected sample, following results are obtained. First of all, the removal rate of suspended material, BOD, COD, T-N, TOC, turbidity, and $NH_3$ -N appear 82%, 78%, 42%, 15%, 57%, 43%, 54%, and 55% respectively and it is known that the submerged biofilter process of media packing channel method takes effects on water quality improvement from the above analysis results of water treatment efficiency. And the analyzed results for water temperature, residence time, and activities of microorganism, which can be the factors affect on water quality improvement, are as follows. 1) The removal rate variation of SS, BOD, and COD attendant on water temperature change is examined and it is known that the removal rate increases at $13^{\circ}C$ or above. 2) The removal rate of SS, BOD, and COD attendant on residence time is most active in the range of 0~18hr, 0~1.8hr, 0~2.7hr respectively, so it is found that the removal rate becomes smaller after 2.7hr. 3) From the examination of microorganism activity with the abundance of normal bacteria, it is found that the floating bacteria decrease as the flow distance from raw water inflow point of PILOT PLANT increases, and the adhesive bacteria have no concern with the flow distance. And it its known that the biomass of fine algae decreases as the flow distance from the raw water inflow point of PILOT PLANT increases from the examination with Chl-a.

  • PDF

A Measurement of Luminous Environment and Power Generation according to Control Methods of Blind PV (블라인드 PV 제어에 따른 실내 빛환경 및 발전량 측정)

  • Kim, So-Hyun;Son, A-Rom;Kim, In-Tea;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.14-21
    • /
    • 2013
  • Today, energy problem has become an important issue, and a development of renewable energy is urgent. In architectural fields, a research of the energy efficient lighting system using renewable energy is in progress. The energy efficient lighting system could be realized by integrating a daylight responsive LED lighting control system and a blind PV system. This system is able to save and generate electric energy. Efficiency of this system depends on control methods of blind PV. As a preliminary research, this research analyzed power generation and inflow of available daylight according to control method of blind PV.

Experiment Study on Field Applicability of Siphon as a Intake Facility of Agricultural Reservoir for Disaster Prevention (재해대비 농업용저수지 취수시설로서 사이폰의 현장적용성에 관한 실험적 연구)

  • Yang, Young Jin;Lee, Tae Ho;Oh, Sue Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.103-110
    • /
    • 2018
  • Most of the intake facilities of small agricultural reservoirs are conduits and they are regarded as serious defects due to the structural weakness that penetrates the body of the dam, and countermeasures are needed. This study suggests the application method of siphon type water intake facility by hydraulic model test and physical scale model test of siphon type water intake facility which has high safety and easy maintenance. Experimental results show that sufficient flow rate can be secured for the purpose of intaking water according to the differential head between the reservoir and the discharge part, and the flow rate can be controlled by the valve. The negative pressure was -31.5 kPa, and vibration and noise did not occur during the operation of the siphon. The maximum flow velocity in the discharge outlet was 1.11 m/s which meets the criterion for irrigation canals. Therefore, scour risk would be very low. As a result of the inflow distribution experiment, even if the inflow part is separated by only about 0.8 m, the flow velocity is remarkably decreased, so that the clogging by debris would not appear. When the pump was operated only once for the first time and the inside of the siphon was filled with water, continuous operation was possible by only valve operation. The results of this study are expected to be used for the design guidelines of the water intake facilities and improve safety and maintenance convenience of agricultural reservoirs.

Hydrological Stability Analysis of the Existing Soyanggang Multi-Purpose Dam (소양강 다목적댐의 수문학적 안정성 검토)

  • 고석구;신용노
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 1995
  • This study aims at suggesting an alternative to improve current capacity of flood control for the existing Soyanggang multi-purpose dam which was constructed 20 years ago as a largest dam in Korea. The newly estimated value of the probable maximum precipitation(PMP) is 760.0 mm which is based on the hydrometeorological method. The peak inflow of 1000 years return period at the time of construction was 13,500$m^3$/s. However, the newly estimated peak inflow of the PMF is 18,100$m^3$/s which is 1.34 times bigger than the original one. In order to adopt the newly estimated PMF as a design flood, following four alternatives were compared; (1) allocation of more flood control space by lowering the normal high water level, (2) construction of a new spillway in addition to the existing one, (3) raising the existing dam crest, (4) construction of a new dam which has relevant flood control storage at the upstream of the Soyanggang multipurpose dam. The preliminary evaluation of these alternatives resulted in that the second alternative is most economical and feasible. So as to stably cope with the newly estimated PMF by meeting all the current functions of the multi-purpose dam, a detailed study of an additional spillway tunnel has to be followed.

  • PDF

Impact of Seawater Inflow by the Operation of Sluice Gates on the D.O and pH in the Lake Shihwa, Korea (시화호 배수갑문 운용에 따른 용존산소와 pH 변화)

  • Choi, Jung-Hoon;Kim, Mi-Ock
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.195-207
    • /
    • 2001
  • The variations of D.O and pH due to the inflow of seawater by sluice gates operation were observed in the Lake Shihwa, Korea. The distributions of D.O and pH were investigated at 11 stations during Feburary 1997 to July 1998. The concentration of D.O before gate operation was 10 mg/l or more all over the watershed, yet 5 mg/l or less in the water layers of 11 m or below from March to June 1997. Anoxic layer appeared in June 1997 and expanded during rainy season. The anoxic layer in the lake depleted the oxygen in seawater as seawater was inflowed. It may be interpreted that the phenomenon comes from the contact of seawater to lower fresh water. The contact of seawater in pH 7.8 to 8.2 to lower water less than pH 7.4 enhanced to oxidize. After January 1998, D.O of the lake increased over 10 mg/l and the stratification was weakened. As a result, it may be concluded that the best way to improve the water qualities is to increase the amount of seawater inflow and outflow so as not to be generated pycnocline in summer.

  • PDF

A Study on Applicability of Coagulant Mixer and Flow Analysis of the Non-powered Vortex Mixer using CFD (전산유체역학(CFD)을 이용한 무동력 와류 혼화장치의 유동해석 및 응집제 혼화장치 적용 가능성 연구)

  • Kim, Soo Yeon;Chae, Jong Seong;Kim, Sin Young;Zhang, Meng Yu;Ohm, Tea In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.706-713
    • /
    • 2017
  • This study compared and analyzed the water treatment efficiency and the applicability of water treatment plant using the existing Mechanical Rapid-Mixer by introducing the Non-powered Vortex Mixer to the domestic water treatment plant. For this study, fluid flow characteristics and head loss of a Non-powered Vortex Mixer are calculated by Computational Fluid Dynamics (CFD)respectively. The head loss rate inside the mixer was 11.30% when the inflow velocity was 0.5 m/sec, 16.27% at 0.6 m/sec and 21.44% at 0.7 m/sec, the head loss rapidly increased at the optimal velocity of 0.5 m/sec. For the inflow velocity of 0.5 m/sec, the turbulent intensity at the inlet was 2.37% and at the outlet was 7.83%, so there was sufficient mixing strength for the particulate matter and the coagulant. The result of the water quality of the treatment plants with the inflow velocity of 0.38 m/sec that was operated in three years after replacing all 12 units of the existing Rapid-Mixer with the Non-powered Mixer met the standards. Hence, it is possible to reduce the energy consumption of 64,143 ~ 65,306 kWh/year since the Rapid-Mixer is replaced by the Non-powered Vortex Mixer.

Studies on the Irrigation Water Quality along the Seomjin River (섬진강수계 농업용수의 수질조사 연구)

  • Lee, Jong-Sik;Kang, Jong-Gook;Kim, Jong-Gu
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 1993
  • The water quality at Seomjin River stream was surveyed at 8 sites of main stream and 4 sites of tributaries for 6 months from April to September in 1989. The overall results are summarized as follows: 1. Do concentration of main stream ranged from 7.5 to 9.0 ppm. 2. The average $No_3-N$ content of main stream was increased to 3.86 ppm at June, thereafter it was decreased by dilution with rainwater. 3. The water quality of Seomjin River stream was suitable for the irrigation source with the exception of site 8 where the contents of EC, $Cl^-$ and $SO_4\;^{2-}$ were very high according to the influence of sea water. 4. In the influence of tributaries on changes of the water quality along the Seomjin River, the water quality of main stream was deteriorated with inflow of Osu-cheon and Yo-cheon in the middle stream, but thereafter it was recovered with inflow of Boseong River and Hwangjeon-cheon. 5. The Yo-cheon was rapidly polluted by the sewage of Namweon city, that is, contents of COD and $NO_3-N$ were incresed from 0.97 to 7.10 ppm and from 1.86 to 3.11 ppm respectively.

  • PDF

Optimal Flood Control Volume in the Irrigation Reservoir (관개저수지의 적정 홍수조절용량 설정방법)

  • 김태철;문종필;민진우;이훈구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.81-91
    • /
    • 1998
  • Water level of irrigation reservoir during the flood season could be kept to a certain level, so called, flood control level by releasing the flood inflow in advance in order to reduce the peak discharge of next coming flood and the damage of inundation. Concept of restriction intensity of water supply was introduced to evaluate the influence of flood control volume on the irrigation water supply. Restriction intensity can be calculated by multiplying the ratio of restriction to the days of restriction which are obtained from the operation rule curve and daily water level of irrigation reservoir and it has the dimension of % day. The method of restriction intensity was applied to the Yedang irrigation reservoir with the observed data of 30 years to review whether the present flood control volume is reasonable or not, and suggest the optimal flood control volume, if possible.

  • PDF