• Title/Summary/Keyword: $SO_2$ Removal

Search Result 1,091, Processing Time 0.033 seconds

Test Method for Particle Removal Characteristic of Equipment Fan Filter Unit (EFFU) (Equipment Fan Filter Unit (EFFU)의 Particle 제거 성능평가 방법)

  • Lee, Yang-Woo;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.59-62
    • /
    • 2012
  • This test method covers a procedure for measuring particle removal characteristic of equipment fan filter unit(EFFU) installed inside of semiconductor process equipments, FPD manufacturing equipments and so on. Since EFFU is a combination of air filter and the assembly of fan, motor and frame, the integrity of these parts is very important for the performance of EFFU. So a conventional particle removal test method for air filters is not suitable for EFFU particle removal performance. This test method defines an evaluation method for EFFU which is installed inside an enclosed space to remove particles that are generated inside process equipment. The particle removal performance of EFFUs is usually depending on the performance of filter media and air flow rate. To understand a performance of an EFFU, the filter media characteristic, air flow rate and the integrity of EFFU parts should be considered simultaneously. This test method is intended to demonstrate the system performance of an EFFU and successfully evaluated EFFU performance characteristics.

Removal of Harmful Gas with Wood or Bark Charcoal (목질 및 수피탄화물에 의한 기상 유해가스 흡착제거)

  • Jo, Tae-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.69-76
    • /
    • 2008
  • To estimate removal ability of harmful gas by charcoal, we carbonized Red oak (Quercus mongolica Fischer) wood and Larch (Larix leptoepis) bark at $300^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$ for 1 hour. Gas removal ratios was increased with carbonization temperature but there is no difference between wood and bark charcoal. In the case of bad smell and VOC gas, woody charcoal including bark charcoal carbonized at $300^{\circ}C$ showed low removal ratio, less than 50%, whereas woody charcoals which was carbonized at more than $600^{\circ}C$ reached almost 100% removal ratio to bad smell gas such as trimethylamine, methymercaptan, hydrogen sulfide, and to VOC such as benzene, toluene, xylene in $5{\ell}$ tedler bag with each gas of 100 ppm. It was thought that because charcoals carbonized at high temperature, for example, $600^{\circ}C$ or $900^{\circ}C$ have enough specific surface area to adsorb gas of 100 ppm. Moreover these charcoals rapidly removed almost gas in 10 minutes. However, acetylene, $SO_2$ and $NO_2$, charcoals which was carbonized more than $600^{\circ}C$ and which showed high removal ratio had low gas removal ratio of 40% at even 4 hours adsorption. It was concluded that adsorptive ability of woody charcoal was mainly influenced with carbonizing temperature, so that different charcoals carbonized at different temperature brings different gas removal ratio because these charcoals have not only different physical factor such as specific surface area but different chemical characteristic such as functional group, expected.

Removal of Natural Organic Matter using Potassium ferrate(VI) (Potassium ferrate(VI)를 이용한 자연유기물질 제거)

  • Lim, Mi-Hee;Kim, Myoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1337-1344
    • /
    • 2007
  • In this research, we synthesized potassium ferrate(VI) acting as an oxidant, disinfectant, and coagulant, and used it to treat natural organic matter(NOM, HA and FA) in river water. The removal efficiencies obtained by $UV_{254}$ ranged from 20.7 to 73.6% for 10 mg/L HA and from 52.6 to 77.5% for 10 mg/L FA in Nakdong river sample as the ferrate dose varied from 2 to 46 mg/L(as Fe). However, the removal efficiencies by TOC analysis ranged from 0 to 20.3% for HA and from 0 to 26.6% for FA at the same ferrate doses. The removal efficiencies of NOM increased either with decreasing pH or with increasing temperature. The removal efficiency of HA by ferrate was comparable to those by traditional coagulants such as $Al_2(SO_4)_3{\cdot}18H_2O$, $FeSO_4{\cdot}7H_2O$, and FeO(OH). The reaction between ferrate and HA reached a steady state within 60 seconds, showing first-order with respect to the reaction time. The removal efficiencies of HA by traditional coagulants were improved by pretreatment of HA using a small amount of ferrate.

SO2 Removal by Internal Circulation of de-SOx Absorbents (흡수제 내부순환형 탈황장치의 SO2 제거성능 특성)

  • Park, Young-Ok;Park, Hyun-Jin;Kim, Yong-Ha
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.672-680
    • /
    • 2011
  • Three new granular absorbents were prepared from calcium hydroxide, and applied to an FGD process with internal circulation. The aim of the study was finding the most efficient of the these three applied absorbents for the $SO_2$ removal at high flue gas temperatures. The absorbent is fed to the testing unit at high operation temperature and fluidized inside the FGD system where the sorbent particles react with the $SO_2$ gas. The rate of $SO_2$ decomposition was high in C-type absorbent which had the large surface area. De-SOx characteristics of the current absorbents appeared to be similar to the other conventional agents in this fluidized bed combustor. In particular, the optimum de-SOx condition could be achieved at high mole ratios of Ca to S which can reduce the residual $SO_2$.

A Study on the Efficient Applicability of Fenton Oxidation for the Wastewater Containing Non-biodegradable Organics (생물난분해성 유기물질 함유 폐수처리를 위한 Fenton 산화법의 효율적 적용방안에 관한 연구)

  • Jun, Se Jin;Kim, Mi Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.76-83
    • /
    • 2000
  • This research is about wastewater containing non-biodegradable TDI(Toluene Diisocyanate) that is treated by the activated carbon adsorption method. In the case of the Fenton oxidation process being applied to the existing process, optimal pH, reaction time, chemical dosing amount, removal rate, and cost were investigated. A pilot plant test was applied after finding optimal conditions with lab experiments. The optimal conditions were pH 3~5(COD removal rate 84~88%) and reaction time 30min~1hr. In higher $H_2O_2$ dosing amount, COD removal rate was a little higher. But there was little difference in the removal rate according to $FeSO_4{\cdot}7H_2O$ dosing amount. Treatment cost was economical in the case of the Fenton oxidation process being operated earlier than activated carbon adsorption system. But chemical dosing point, chemical mixing effect, chemical dosing amount, removal rate, and the cost of facility and others must be considered in practical process.

  • PDF

Removal of Bacteriophage T7 from Artificial groundwater by Layered Double Hydroxide (층상이중수산화물에 의한 인공지하수내의 박테리오파지 T7 제거)

  • Park, Jeong-Ann;Lee, Chang-Gu;Kang, Jin-Kyu;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.426-431
    • /
    • 2011
  • The objective of this study was to investigate the virus removal from artificial groundwater using Mg-Fe layered double hydroxide (LDH). Batch experiments were conducted under various experimental conditions to examine bacteriophage T7 removal with Mg-Fe LDH. Results showed that the removal of T7 by Mg-Fe LDH was a fast process, reaching equilibrium within 2~3 hrs. Mg-Fe LDH had the virus removal capacity of $1.57{\times}10^8pfu/g$ with a removal percent of 96%. Results also showed that the effect of solution pH on T7 removal was minimal between pH 6.2 and 9.1. The influence of anions ($SO_4^{2-}$, $CO_3^{2-}$, $HPO_4^{2-}$) on T7 removal was significant due to their competition with bacteriophage at the sorption sites on LDH, while the effect of $NO_3^-$ was negligible. This study demonstrated that Mg-Fe LDH could be applied as adsorbents for virus removal in water treatment.

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.

Removal of Alkali Odors using Impregnated ACFs (첨착 ACF를 이용한 염기성 악취물질의 제거)

  • 김기환;김덕기;최봉각;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.92-97
    • /
    • 1998
  • Malodorous gases give discomfort and harm to laborers and residential neighborhoods and therefore, the removing odor materials emitted from plants and industrial facilities is important subject. The main ingredients of alkali odor are $NH_3$ and $CE_3SH$. The adsorption characteristics of odors were studied using four different activated carbon fibers(ACF) and active carbon(AC). Alkali odor was removed by using ACF impregnated with $H_3PO_4$ and $H_2SO_4$ and treated with $HNO_3$ and NaOH. The experimental result showed that ACF has a higher removal efficiency than AC. The adsorption capacity was increased with the impregnation and surface treatment, and $H_2SO_4$ was the best impregnant for the removal of alkali odor.

  • PDF

The effect of H2O, NH3 and applied voltage to the particle conversion in the desulfurization system using a nano-pulse plasma (나노펄스 플라즈마를 이용한 탈황 시스템의 H2O 및 NH3, 펄스 인가전압에 따른 입자변환 분석)

  • Kim, Younghun;Shin, Dongho;Lee, Gunhee;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Nano-pulse plasma technology has great potential as the process simplicity, high efficiency and low energy consumption for SO2 removal. The research on the gas-to-particle conversion is required to achieve higher efficiency of SO2 gas removal. Thus, we studied the effect of the relative humidity, NH3 concentration and applied voltage of the nano-pulse plasma system in the gas to particle conversion of SO2. The particles from the conversions were increased from 10 to 100 nm in diameter as relative humidity, NH3 concentration, applied voltage increases. With these results, nano-pulse plasma system can be used to more efficient removal of SO2 gas by controlling above parameters.

Effect of SO2 on the Simultaneous Removal of Mercury and NOx over CuCl2-loaded V2O5-WO3/TiO2 SCR Catalysts (CuCl2가 담지된 V2O5-WO3/TiO2 SCR 촉매에 의한 수은 및 NOx 동시 제거에서 SO2의 영향)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2022
  • CuCl2-loaded V2O5-WO3/TiO2 catalyst showed excellent activity in the catalytic oxidation of elemental mercury to oxidized mercury even under SCR condition in the presence of NH3, which is well known to significantly inhibit the oxidation activity of elemental mercury by HCl. Moreover, it was confirmed that, when SO2 was present in the reaction gas together with HCl, excellent elemental mercury oxidation activity was maintained even though CuCl2 supported on the catalyst surface was converted to CuSO4. This is thought to be because not only HCl but also the SO4 component generated on the catalyst surface promotes the oxidation of elemental mercury. However, in the presence of SO2, the total mercury balance before and after the catalytic reaction was not matched, especially as the concentration of SO2 increased. In order to understand the cause of this, further studies are needed to investigate the effect of SO2 in the SnCl2 aqueous solution employed for mercury species analysis and the effect of sulfate ions generated on elemental mercury oxidation. It was confirmed that SO2 also promotes NOx removal activity, which is thought to be because the increase in acid sites by SO4 generated on the catalyst surface by SO2 facilitates NH3 adsorption. The composition change and structure of the components present on the catalyst surface under various reaction conditions were measured by XRD and XRF. These measurement results were presented as a rational explanation for the results that SO2 enhances the oxidation activity of elemental mercury and the NOx removal activity in this catalyst system.