Browse > Article

Removal of Harmful Gas with Wood or Bark Charcoal  

Jo, Tae-Su (Quality Control & Standardization Team, Korea Forest Research Institute)
Publication Information
Journal of the Korean Wood Science and Technology / v.36, no.6, 2008 , pp. 69-76 More about this Journal
Abstract
To estimate removal ability of harmful gas by charcoal, we carbonized Red oak (Quercus mongolica Fischer) wood and Larch (Larix leptoepis) bark at $300^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$ for 1 hour. Gas removal ratios was increased with carbonization temperature but there is no difference between wood and bark charcoal. In the case of bad smell and VOC gas, woody charcoal including bark charcoal carbonized at $300^{\circ}C$ showed low removal ratio, less than 50%, whereas woody charcoals which was carbonized at more than $600^{\circ}C$ reached almost 100% removal ratio to bad smell gas such as trimethylamine, methymercaptan, hydrogen sulfide, and to VOC such as benzene, toluene, xylene in $5{\ell}$ tedler bag with each gas of 100 ppm. It was thought that because charcoals carbonized at high temperature, for example, $600^{\circ}C$ or $900^{\circ}C$ have enough specific surface area to adsorb gas of 100 ppm. Moreover these charcoals rapidly removed almost gas in 10 minutes. However, acetylene, $SO_2$ and $NO_2$, charcoals which was carbonized more than $600^{\circ}C$ and which showed high removal ratio had low gas removal ratio of 40% at even 4 hours adsorption. It was concluded that adsorptive ability of woody charcoal was mainly influenced with carbonizing temperature, so that different charcoals carbonized at different temperature brings different gas removal ratio because these charcoals have not only different physical factor such as specific surface area but different chemical characteristic such as functional group, expected.
Keywords
woody Charcoal; Quercus mongolica; Larix leptoepis; specific surface area; removal ratio; adsorption equilibrium;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 이오규, 최준원, 조태수, 백기현. 2007. 목탄계 건축자재에 의한 포름알데히드 흡착. 목재공학. 35(3): 61-69.   과학기술학회마을
2 Pulido-Novicio, L., T. Hata, Y. Kurimoto, S. Doi, S. Ishihara, and Y. Imamura. 2001. Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J. Wood Sci. 47: 48-57.   DOI   ScienceOn
3 Rong, H., Z. Ryu, J. Zheng, and Y. Zhang. 2002. Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde, Carbon. 40: 2291-2300.   DOI   ScienceOn
4 Sekine, Y. 2002. Oxidative decomposition of formaldehyde by metal oxides at room temperature. Atmospheric Environment. 36: 5543-5547.   DOI   ScienceOn
5 Tanada, S., N. Kawasaki, T. Nakamura, M. Araki, and M. Isomura. 1999. Removal of Formaldehyde by Activated Carbons Containing Amino Groups. Journal of Colloid and Interface Science. 214: 106-108.   DOI   ScienceOn
6 U. S. Consumer Product Safety Commision. 1997. An Update on Formaldehyde.
7 Youssef, A. M., Th. El-Nabarawy, and S. E. Samra. 2004. Sorption properties of chemically-activated carbons. 1. Sorption of cadmium (II) ions. Colloids Surf. A235: 153-163.
8 조태수, 이오규, 안병준, 최준원. 2006. 국산 수종으로 탄화한 목탄의 물성 및 흡착성. 임산에너지. 25(1): 9-17.
9 安部郁夫. 1994. 吸着剤として見直される木炭. 科學と工業. 68(4): 161-169.
10 安部郁夫, 岩崎 訓, 丸山 純, 福原知子. 2000. 木炭の脱臭性能. 科學と工業. 74(3): 106-111.
11 人見充則, 計良善也, 立体英機, 幾田信生, 川舟功朗, 安部郁夫. 1993. 多孔性炭素材料の吸 着性能評価法(木炭類の細孔構造と吸着性能). 炭素. 156: 22-28.
12 人見充則, 計良善也, 立体英機, 安部郁夫, 川舟功朗, 幾田信生. 1993. 多孔性炭素材料の吸 着性能評価法(スギ及びヒノキからの木炭の製造と物性). 炭素. 160: 247-254.
13 Arthur D. Little Inc.. 1981. Formaldehyde concentration level control in mobile homes, A report to the HCHO Institute by Arthur D. Little Inc.. Cambridge, MA.
14 Eriksson, B., L. Johanssin, and I. Svedung. 1980. Filtration of formaldehyde contaminated indoor air. The Nordest Symposium on Air Pollution Abatement by Filtration and Respiratory Protection, Copenhagen.
15 Figueiredo, J. L., M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Orfao. 1999. Modification of the surface chemistry of activated carbons. Carbon. 37: 1379-1389.   DOI   ScienceOn
16 권성민, 김남훈. 2006. 목재의 탄화기구 해석(I). 목재공학. 34(3): 8-14.   과학기술학회마을
17 김병로, 이재용. 2006. 수피의 탄화 이용에 관한 연구. 목재공학. 34(1): 40-51.
18 조태수, 이오규, 최준원, 변재경. 2007b. 신갈나무 목탄의 카드뮴(Cd)이온 흡착 특성. 목재공학. 36(3): 93-100.   과학기술학회마을
19 이오규, 조태수. 2006. 소나무 및 참나무 백탄의 물성과 구리(II) 이온 흡착 효과. 임산에너지. 25(2): 55-63.   과학기술학회마을
20 조태수, 안병준, 최돈하. 2005a. 탄화온도 차이에 의한 목질탄화물의 흡착성 변화. 목재공학. 33(3): 45-52.   과학기술학회마을
21 조태수, 이오규, 최준원. 2007a. 목탄 및 수피탄의 중금속 이온 제거. 목재공학. 35(4): 29-37.   과학기술학회마을
22 조태수, 안병준, 최돈하, 宮越昭彦. 2005b. 저온 열처리 셀룰로오스의 염기성가스 흡착과 용해특성. 목재공학 33(6): 63-70.   과학기술학회마을