• Title/Summary/Keyword: $SO_{2}$ Removal Efficiency

Search Result 370, Processing Time 0.04 seconds

Study on Adsorption of PO43--P in Water using Activated Clay (활성 백토를 이용한 수중의 인산성 인(PO43--P) 흡착에 관한 연구)

  • Hwang, Ji Young;Jin, Ye Ji;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.197-202
    • /
    • 2021
  • In this study, activated clay treated with H2SO4 (20% by weight) and heat at 90 ℃ for 8 h for acid white soil was used as an adsorbent for the removal of PO43--P in water. Prior to the adsorption experiment, the characteristics of activated clay was examined by X-ray Fluorescence Spectrometry (XRF) and BET surface area analyser. The adsorption of PO43--P on activated clay was steeply increased within 0.25 h and reached equilibrium at 4 h. At 5 mg/L of low PO43--P concentration, roughly 98% of adsorption efficiency was accomplished by activated clay. The adsorption data of PO43--P were introduced to the adsorption isotherm and kinetic models. It was seen that both Freundlich and Langmuir isotherms were applied well to describe the adsorption behavior of PO43--P on activated clay. For adsorption PO43--P on activated clay, the Freundlich and Langmuir isotherm coefficients, KF and Q, were found to be 8.3 and 20.0 mg/g, respectively. The pseudo-second-order kinetics model was more suitable for adsorption of PO43--P in water/activated clay system owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal than the pseudo-first-order kinetics model. The results of study indicate that activated clay could be used as an efficient adsorbent for the removal of PO43-P from water.

Recent Trends in Photodynamic Therapy Using Upconversion Nanoparticles (업컨버전 나노입자를 이용한 광역학치료 연구 동향)

  • Im, Se Jin;Lee, Song Yeul;Park, Yong Il
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.138-146
    • /
    • 2018
  • Photodynamic therapy (PDT) is a great potential approach for the localized tumor removal with fewer metastatic potentials and side effects in treating the disease. In the treatment process, a photosensitizer (PS) that absorbs a light energy to generate reactive oxygen is essential. In general, a visible light is used as a light source of PDT, so that side effects from the light source are inevitable. For this reason, upconversion nanoparticles (UCNPs) using near-infrared (NIR) as an excitation source are attracting attention in the field of disease diagnosis and treatment. UCNPs have the low cytotoxicity and phototoxicity, and also advantages such as deep tissue penetration and low background autofluorescence. For PDT, UCNPs should be combined with a PS which absorbs the light energy from UCNPs and transfers it to the surrounding oxygen to produce reactive oxygen. In addition, the therapeutic efficacy can be improved by modifying nanoparticle surfaces, adding anti-cancer drugs, or combining with photothermal therapy (PTT). In this review, we summarize the recent research to improve the efficiency of PDT using UCNPs.

Determination of Detention Basin Size for NPS Control in TMDL Area (수질오염총량관리제하에서 친환경 개발사업을 위한 자연형 비점저감시설의 규모 산정)

  • Jung, Yong-Jun;Lee, Eun-Ju;Lee, So-Young;Lim, Keong-Ho;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Since 2000, environmental policies and regulations in Korea are rapidly changing to TMDL(Total Maximum Daily Load) and nonpoint source control. This is due to bad water quality in drinking water sources. Although many environmental facilities having high removal efficiency are constructed and applied in nationwide for controling various pollutants from wastewaters, the water quality in rivers is worse and worse because of nonpoint pollution. In fact, TMDL is a new environmental regulation controling total daily loadings from watershed areas. Actually, the nonpoint pollutant is originated from various landuses and its control is based on TMDL regulation. Therefore, this research is performed to determine the size of detention basin to control nonpoint pollutants from resort developing areas. The detention basin is one of best management practices, which is useful for controling pollutants and flooding from the developing areas. However, it should be designed and constructed with cost effective method. Recent 10 years rainfall data are used to determine the size of detention basin. The cost effective size is determined to 7.4mm accumulated rainfall.

  • PDF

Method of Reducing Separation Membrane Fouling Using Microbubbles (마이크로버블을 이용한 분리막 파울링 저감방법)

  • Kyung-Hwan Ku;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Due to water shortages caused by water pollution and climate change, total organic carbon (TOC) standards have been implemented for wastewater discharged from public sewage treatment facilities. Furthermore, there is a growing interest and body of research pertaining to the reuse of sewage treatment water as a secure alternative water resource. The membrane bio-reactor (MBR) method is commonly used for advanced wastewater treatment because it can remove organic and inorganic ions and it does not require or emit any chemicals. However, the MBR process uses a separation membrane (MF), which requires frequent film cleaning due to fouling caused by a high concentration of mixed liquor suspended solid (MLSS). In this study, process improvement and microbubble cleaning efficiency were evaluated to improve the differential pressure, water flow, and MF fouling, which are the biggest disadvantages of operating the MF. The existing MBR method was improved by installing a precipitation tank between the air tank and the MBR tank in which raw water was introduced. Microbubbles were injected into a separation membrane tank into which the supernatant water from the precipitation tank was introduced. The microbubble generator was operated with a 15 day on, 15 day off cycle for 5 months to collect discharged water samples (4L) and measure TOC. As the supernatant water from the precipitation tank flowed into the separation membrane tank, about 95% of the supernatant water MLSS was removed so the MF fouling from biological contamination was prevented. Due to the application of microbubbles to supernatant water from the precipitation tank, the differential pressure of the separation membrane tank decreased by 1.6 to 2.3 times and the water flow increased by 1.4 times. Applying microbubbles increased the TOC removal rate by more than 58%. This study showed that separately operating the air tank and the separation membrane tank can reduce fouling, and suggested that applying additional microbubbles could improve the differential pressure, water flow, and fouling to provide a more efficient advanced treatment method.

The Photocatalytic Degradation of Humic Acid by TiO2 Sol-Gel Coating -Characterization of Humic Acid in the Chemical Oxidation Treatment (II)- (TiO2 졸-겔 코팅 막에 의한 Humic Acid의 광분해 -화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구 (II)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.765-773
    • /
    • 2000
  • The degradation of humic acid using $TiO_2$ coatings was studied, $TiO_2$ coatings were prepared by dip-coating method. Sol solutions for coating were prepared by mixing the gel, which can be produced by the reaction of $TiOCl_2$ and $NH_4OH$ solution, and hydrogen peroxide solution, and hydrolysis of titanium tetraisopropoxide (TTIP). It was shown from XRD that coatings from sol aged at $100^{\circ}C$ for 18h with titanium peroxo solution were crystallized to anatase in the range of temperatures of $25^{\circ}C$ to $500^{\circ}C$. In contrast, those coated from TTIP were crystallized to anatase at temperature above $400^{\circ}C$. So the sols originated from $TiCl_4$ can be applied for not only on the heat-resistance substrates but on the plastic substrates. Thickness and the quality of the films were dependent on the withdrawing speed, the concentration of sol, and the number of coating. The films showed various interference colors depending on the thickness of them. In the case that the films coated 2 times at withdrawing speed of 2.5cm per minute by 0.2M sol, the films had a transparent light blue color with thickness of around 50nm. It was known from the result of photo-degradation by $TiO_2$ coatings using humic acid that the removal efficiency of $COD_{cr}$ was over 85% after illumination of $UV/H_2O_2$ for 40min. and that of UV/VIS absorbable materials was over 95%.

  • PDF

Application of CMP Process to Improving Thickness-Uniformity of Sputtering-deposited CdTe Thin Film for Improvement of Optical Properties (스퍼터링 증확 CdTe 박막의 두께 불균일 현상 개선을 위한 화학적기계적연마 공정 적용 및 광특성 향상)

  • Park, Ju-Sun;Lim, Chae-Hyun;Ryu, Seung-Han;Myung, Kuk-Do;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.375-375
    • /
    • 2010
  • CdTe as an absorber material is widely used in thin film solar cells with the heterostructure due to its almost ideal band gap energy of 1.45 eV, high photovoltaic conversion efficiency, low cost and stable performance. The deposition methods and preparation conditions for the fabrication of CdTe are very important for the achievement of high solar cell conversion efficiency. There are some rearranged reports about the deposition methods available for the preparation of CdTe thin films such as close spaced sublimation (CSS), physical vapor deposition (PVD), vacuum evaporation, vapor transport deposition (VTD), closed space vapor transport, electrodeposition, screen printing, spray pyrolysis, metalorganic chemical vapor deposition (MOCVD), and RF sputtering. The RF sputtering method for the preparation of CdTe thin films has important advantages in that the thin films can be prepared at low growth temperatures with large-area deposition suitable for mass-production. The authors reported that the optical and electrical properties of CdTe thin film were closely connected by the thickness-uniformity of the film in the previous study [1], which means that the better optical absorbance and the higher carrier concentration could be obtained in the better condition of thickness-uniformity for CdTe thin film. The thickness-uniformity could be controlled and improved by the some process parameters such as vacuum level and RF power in the sputtering process of CdTe thin films. However, there is a limitation to improve the thickness-uniformity only in the preparation process [1]. So it is necessary to introduce the external or additional method for improving the thickness-uniformity of CdTe thin film because the cell size of thin film solar cell will be enlarged. Therefore, the authors firstly applied the chemical mechanical polishing (CMP) process to improving the thickness-uniformity of CdTe thin films with a G&P POLI-450 CMP polisher [2]. CMP process is the most important process in semiconductor manufacturing processes in order to planarize the surface of the wafer even over 300 mm and to form the copper interconnects with damascene process. Some important CMP characteristics for CdTe were obtained including removal rate (RR), WIWNU%, RMS roughness, and peak-to-valley roughness [2]. With these important results, the CMP process for CdTe thin films was performed to improve the thickness-uniformity of the sputtering-deposited CdTe thin film which had the worst two thickness-uniformities of them. Some optical properties including optical transmittance and absorbance of the CdTe thin films were measured by using a UV-Visible spectrophotometer (Varian Techtron, Cary500scan) in the range of 400 - 800 nm. After CMP process, the thickness-uniformities became better than that of the best condition in the previous sputtering process of CdTe thin films. Consequently, the optical properties were directly affected by the thickness-uniformity of CdTe thin film. The absorbance of CdTe thin films was improved although the thickness of CdTe thin film was not changed.

  • PDF

Esterification of Indonesia Tropical Crop Oil by Amberlyst-15 and Property Analysis of Biodiesel (인도네시아 열대작물 오일의 Amberlyst-15 촉매 에스테르화 반응 및 바이오디젤 물성 분석)

  • Lee, Kyoung-Ho;Lim, Riky;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.324-332
    • /
    • 2019
  • Most countries including Korea and Indonesia have strong policy for implementing biofuels like biodiesel. Shortage of the oil feedstock is the main barrier for increasing the supply of biodiesel fuel. In this study, in order to improve the stability of feedstock supply and lower the biodiesel production cost, the feasibility of biodiesel production using two types of Indonesian tropical crop oils, pressed at different harvesting times, were investigated. R. Trisperma oils, a high productive non-edible feedstocks, were investigated to produce biodiesel by esterification and transesterification because of it's high impurity and free fatty acid contents. the kindly provided oils from Indonesia were required to perform the filtering and water removal process to increase the efficiency of the esterificaton and transesterification reactions. The esterification used heterogeneous acid catalyst, Amberlyst-15. Before the reaction, the acid value of two types oil were 41, 17 mg KOH/g respectively. After the pre-esterification reaction, the acid value of oils were 3.7, 1.8 mg KOH/g respectively, the conversions were about 90%. Free fatty acid content was reduced to below 2%. Afterwards, the transesterification was performed using KOH as the base catalyst for transesterification. The prepared biodiesel showed about 93% of FAME content, and the total glycerol content was 0.43%. It did not meet the quality specification(FAME 96.5% and Total glycerol 0.24%) since the tested oils were identified to have a uncommon fatty acid, generally not found in vegetable oils, ${\alpha}$-eleostearic acid with much contents of 10.7~33.4%. So, it is required to perform the further research on reaction optimization and product purification to meet the fuel quality standards. So if the biodiesel production technology using un-utilized non-edible feedstock oils is successfully developed, stable supply of the feedstock for biodiesel production may be possible in the future.

Presence of Leukemia-maintaining Cells in Differentiation-resistant Fraction of K562 Chronic Myelogenous Leukemia (만성 골수성 백혈병 K562세포의 분화 내성 분획에서 백혈병 유지 세포의 동정)

  • Lee, Hong-Rae;Kim, Mi-Ju;Ha, Gahee;Kim, So-Jung;Kim, Sun-Hee;Kang, Chi-Dug
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2013
  • The present study investigated whether leukemia-maintaining cells reside in a differentiation-resistant fraction using a megakaryocytic differentiation model of K562 cells. Treatment with phorbol-12-myristate-13-acetate (PMA) significantly inhibited the colony-forming efficiency of the K562 cells. At a PMA concentration of 1 nM or higher, colony was not formed, but approximately 40% of K562 cells still survived in soft agar. Approximately 70% of colony-forming cells that were isolated following the removal of PMA after exposure to the agent were differentiated after treatment with 10 nM PMA for 3 days. The differentiation rate of the colony-forming cells was gradually increased and reached about 90% 6 weeks after colony isolation, which was comparable to the level of a PMA-treated K562 control. Meanwhile, imatinib-resistant variants from the K562 cells, including K562/R1, K562/R2, and K562/R3 cells, did not show any colony-forming activity, and most imatinib-resistant variants were CD44 positive. After 4 months of culture in drug-free medium, the surface level of CD44 was decreased in comparison with primary imatinib-resistant variants, and a few colonies were formed from K562/R3 cells. In these cells, Bcr-Abl, which was lost in the imatinib-resistant variants, was re-expressed, and the original phenotypes of the K562 cells were partially recovered. These results suggest that leukemia-maintaining cells might reside in a differentiation-resistant population. Differentiation therapy to eliminate leukemia-maintaining cells could be a successful treatment for leukemia if the leukemia-maintaining cells were exposed to a differentiation inducer for a long time and at a high dose.

Photocatalytic Oxidation of Arsenite Using Goethite and UVC-Lamp (침철석과 UVC-Lamp를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.215-224
    • /
    • 2017
  • Arsenic (As) is known to be the most toxic element and frequently detected in groundwater environment. Inorganic As exists as arsenite [As(III)] and arsenate [As(V)] in reduced and oxidized environments, respectively. It has been reported that the toxicity of arsenite is much higher than that of arsenate and furthermore arsenite shows relatively higher mobility in aqueous environments. For this reason, there have been numerous researches on the process for oxidation of arsenite to arsenate to reduce the toxicity of arsenic. In particular, photooxidation has been considered to be simple, economical, and efficient to attain such goal. This study was conducted to evaluate the applicability of naturally-occurring goethite as a photocatalyst to substitute for $TiO_2$ which has been mostly used in the photooxidation processes so far. In addition, the effects of several factors on the overall performance of arsenite photocatalytic oxidation process were evaluated. The results show that the efficiency of the process was affected by total concentration of dissolved cations rather than by the kind of those cations and also the relatively higher pH conditions seemed to be more favorable to the process. In the case of coexistence of arsenite and arsenate, the removal tendency by adsorption onto goethite appeared to be different between arsenite and arsenate due to their different affinities with goethite, but any effect on the photocatalytic oxidation of arsenite was not observed. In terms of effect of humic acid on the process, it is likely that the higher concentration of humic acid reduced the overall performance of the arsenite photocatalytic oxidation as a result of competing interaction of activated oxygen species, such as hydroxyl and superoxide radicals, with arsenite and humic acid. In addition, it is revealed that the injection of oxygen gas improved the process because oxygen contributes to arsenite oxidation as an electron acceptor. Based on the results of the study, consequently, the photocatalytic oxidation of aqueous arsenite using goethite seems to be greatly feasible with the optimization of process.

Treatment of Malodorous Waste Air by a Biofilter Process Equipped with a Humidifier Composed of Fluidized Aerobic and Anoxic Reactor (폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정을 이용한 악취폐가스의 처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • In this research, a biofilter system equipped with a biofilter process and a humidifier composed of a fluidized aerobic and an anoxic reactor, was constructed to treat odorous waste air containing hydrogen sulfide, ammonia and VOC, frequently generated from pig and poultry housing facilities, compost manufacturing factories and publicly owned facilities. Its optimum operating condition was revealed and discussed. In the experiment of complex feed, the ammonia of fed-waste air was removed by ca. 75% and more than 20% at the stage of the humidifier and the biofilter, respectively. The toluene of the fed-waste air was removed by ca. 20% and more than 70% at the stage of the humidifier and the biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of the humidifier and the biofilter, respectively. In addition, hydrogen sulfide was almost absorbed at the stage of the humidifier so that it was not detected at the biofilter process. In the experiment of ammonia-containing feed, the ammonia of fed-waste air was removed by ca. 65% and 35% at the stage of the humidifier and the biofilter, respectively. Its removal efficiency of ammonia at the stage of the humidifier was 10% less than that in the experiment of complex feed, due to no supply of such carbon source as toluene required in the process of denitrification. In the experiments of complex feed, ammonia-containing feed with and without (instead, glucose) the addition of yeast extract, the absorption rates of ammonia-nitrogen were ca. 0.28 mg/min, 0.23 mg/min and 0.27 mg/min, respectively. The corresponding denitrification rates in the anoxic reactor were 0.42 mg/min, 0.55 mg/min and 0.27 mg/min, respectively. In addition, in the modeling of bubble column(the fluidized aerobic reactor of the humidifier) process, the value of specific surface area(a) of bubbles multiplied by enhanced mass transfer coefficient (E $K_y$) was evaluated to be 0.12/hr.