Browse > Article
http://dx.doi.org/10.14478/ace.2018.1025

Recent Trends in Photodynamic Therapy Using Upconversion Nanoparticles  

Im, Se Jin (School of Chemical Engineering, Chonnam National University)
Lee, Song Yeul (School of Chemical Engineering, Chonnam National University)
Park, Yong Il (School of Chemical Engineering, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.2, 2018 , pp. 138-146 More about this Journal
Abstract
Photodynamic therapy (PDT) is a great potential approach for the localized tumor removal with fewer metastatic potentials and side effects in treating the disease. In the treatment process, a photosensitizer (PS) that absorbs a light energy to generate reactive oxygen is essential. In general, a visible light is used as a light source of PDT, so that side effects from the light source are inevitable. For this reason, upconversion nanoparticles (UCNPs) using near-infrared (NIR) as an excitation source are attracting attention in the field of disease diagnosis and treatment. UCNPs have the low cytotoxicity and phototoxicity, and also advantages such as deep tissue penetration and low background autofluorescence. For PDT, UCNPs should be combined with a PS which absorbs the light energy from UCNPs and transfers it to the surrounding oxygen to produce reactive oxygen. In addition, the therapeutic efficacy can be improved by modifying nanoparticle surfaces, adding anti-cancer drugs, or combining with photothermal therapy (PTT). In this review, we summarize the recent research to improve the efficiency of PDT using UCNPs.
Keywords
phtodynamic therapy; upconversion; nanoparticles; near-infrared;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Siegel, D. Naishadham, and A. Jemal, Cancer statistics, 2013, CA Cancer J. Clin., 63, 11-30 (2013).   DOI
2 G. Makin, Principles of chemotherapy, Paediatr. Child Health, 24, 161-165 (2014).   DOI
3 P. Zhang, C. Hu, W. Ran, J. Meng, Q. Yin, and Y. Li, Recent progress in light-triggered nanotheranostics for cancer treatment, Theranostics, 6, 948-968 (2016).   DOI
4 T. J. Dougherty, G. B. Grindey, R. Fiel, K. R. Weishaupt, and D. G. Boyle, Photoradiation therapy. II. cure of animal tumors with hematoporphyrin and light, J. Natl. Cancer Inst., 55, 115-121 (1975).   DOI
5 S. S. Lucky, K. C. Soo, and Y. Zhang, Nanoparticles in photodynamic therapy, Chem. Rev., 115, 1990-2042 (2015).   DOI
6 M. R. Saboktakin and R. M. Tabatabaee, The novel polymeric systems for photodynamic therapy technique, Int. J. Biol. Macromol., 65, 398-414 (2014).   DOI
7 N. Teraphongphom, C. S. Kong, J. M. Warram, and E. L. Rosenthal, Specimen mapping in head and neck cancer using fluorescence imaging, Laryngoscope Investig. Otolaryngol., 2, 447-452 (2017).   DOI
8 T. L. Doane and C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy, Chem. Soc. Rev., 41, 2885-2911 (2012).   DOI
9 W. Feng, X. Zhu, and F. Li, Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications, NPG Asia Mater., 5, 75 (2013).   DOI
10 S. De Koker, R. Hoogenboom, and B. G. De Geest, Polymeric multilayer capsules for drug delivery, Chem. Soc. Rev., 41, 2867-2884 (2012).   DOI
11 K. Raemdonck, K. Braeckmans, J. Demeester, and S. C. De Smedt, Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery, Chem. Soc. Rev., 43, 444-472 (2014).   DOI
12 H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, Upconverting near-infrared light through energy management in core-shell-shell nanoparticles, Angew. Chem. Int. Ed., 52, 13419-13423 (2013).   DOI
13 N. L. Oleinick, R. L. Morris, and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 1, 1-21 (2002).   DOI
14 N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles, Nano Lett., 11, 835-840 (2011).   DOI
15 A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals, J. Am. Chem. Soc., 133, 998-1006 (2011).   DOI
16 F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968-973 (2011).   DOI
17 L. Liang, Y. Lu, R. Zhang, A. Care, T. A. Ortega, S. M. Deyev, Y. Qian, and A. V. Zvyagin, Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles, Acta Biomater., 51, 461-470 (2017).   DOI
18 N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers, Nat. Med., 18, 1580-1585 (2012).   DOI
19 Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of $Nd^{3+}$-Sensitized nanoparticles, Adv. Mater., 26, 2831-2837 (2014).   DOI
20 X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, Mechanistic investigation of photon upconversion in $Nd^{3+}$-sensitized core-shell nanoparticles, J. Am. Chem. Soc., 135, 12608-12611 (2013).   DOI
21 S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy, ACS Nano, 9, 191-205 (2015).   DOI
22 F. Chen, H. Hong, Y. Zhang, H. F. Valdovinos, S. Shi, G. S. Kwon, C. P. Theuer, T. E. Barnhart, and W. Cai, In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles, ACS Nano, 7, 9027-9039 (2013).   DOI
23 P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, Lanthanide-doped $LiLuF_4$ upconversion nanoprobes for the detection of disease biomarkers, Angew. Chem. Int. Ed., 53, 1252-1257 (2014).   DOI
24 J. Lai, B. P. Shah, Y. Zhang, L. Yang, and K. B. Lee, Real-time monitoring of ATP-responsive drug release using mesoporous-silicacoated multicolor upconversion nanoparticles, ACS Nano, 9, 5234-5245 (2015).   DOI
25 Z. Yu, Q. Sun, W. Pan, N. Li, and B. Tang, A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy, ACS Nano, 9, 11064-11074 (2015).   DOI
26 C. Wang, L. Cheng, and Z. Liu, Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics, Theranostics, 3, 317-330 (2013).   DOI
27 X. F. Qiao, J. C. Zhou, J. W. Xiao, Y. F. Wang, L. D. Sun, and C. H. Yan, Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro, Nanoscale, 4, 4611-4623 (2012).   DOI
28 Z. Hou, Y. Zhang, K. Deng, Y. Chen, X. Li, X. Deng, Z. Cheng, H. Lian, C. Li, and J. Lin, UV-emitting upconversion-based $TiO_2$ photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway, ACS Nano, 9, 2584-2599 (2015).   DOI
29 D. Zheng, C. Pang, Y. Liu, and X. Wang, Shell-engineering of hollow g-$C_3N_4$ nanospheres via copolymerization for photocatalytic hydrogen evolution, Chem. Commun., 51, 9706-9709 (2015).   DOI
30 Y. Wang, F. Wang, Y. Zuo, X. Zhang, and L. F. Cui, Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine, Mater. Lett., 136, 271-273 (2014).   DOI
31 V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy, Chem. Soc. Rev., 43, 744-764 (2014).   DOI
32 J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, and P. Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery, Chem. Soc. Rev., 42, 1147-1235 (2013).   DOI
33 A. V. Ambade, E. N. Savariar, and S. Thayumanavan, Dendrimeric micelles for controlled drug release and targeted delivery, Mol. Pharm., 2, 264-272 (2005).   DOI
34 W. D. Jang, D. Yim, and I. H. Hwang, Photofunctional hollow nanocapsules for biomedical applications, J. Mater. Chem. B, 2, 2202-2211 (2014).
35 F. Tang, L. Li, and D. Chen, Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery, Adv. Mater., 24, 1504-1534 (2012).   DOI
36 H. Zhang, Y. Shan, and L. Dong, A comparison of $TiO_2$ and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer, J. Biomed. Nanotechnol., 10, 1450-1457 (2014).   DOI
37 W. M. Sharman, C. M. Allen, and J. E. van Lier, Role of activated oxygen species in photodynamic therapy, Meth. Enzymol., 319, 376-400 (2000).
38 A. P. Castano, T. N. Demidova, and M. R. Hamblin, Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagnosis Photodyn. Ther., 1, 279-293 (2004).   DOI
39 P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, Photodynamic therapy of cancer: an update, CA Cancer. J. Clin., 61, 250-281 (2011).   DOI
40 E. J. Hong, D. G. Choi, and M. S. Shim, Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials, Acta Pharm. Sin. B, 6, 297-307 (2016).   DOI
41 Q. Liu, W. Feng, T. Yang, T. Yi, and F. Li, Upconversion luminescence imaging of cells and small animals, Nat. Protoc., 8, 2033-2044 (2013).   DOI
42 M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy, Nanoscale, 6, 8274-8282 (2014).   DOI
43 L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers, Nat. Commun., 6, 6938 (2015).   DOI
44 R. Naccache, E. M. Rodriguez, N. Bogdan, F. Sanz-Rodriguez, C. Cruz Mdel, A. J. Fuente, F. Vetrone, D. Jaque, J. G. Sole, and J. A. Capobianco, Multifunctional nanomaterials and their applications in drug delivery and cancer therapy, Cancers, 4, 1067-1105 (2012).   DOI
45 S. Jin, L. Zhou, Z. Gu, G. Tian, L. Yan, W. Ren, W. Yin, X. Liu, X. Zhang, Z. Hu, and Y. Zhao, The evolution of gadolinium based contrast agents: From single-modality to multi-modality, Nanoscale, 5, 11910-11918 (2013).   DOI
46 C. Dong, Z. Liu, S. Wang, B. Zheng, W. Guo, W. Yang, X. Gong, X. Wu, H. Wang, and J. Chang, A protein-polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy, ACS Appl. Mater. Inter., 8, 32688-32698 (2016).   DOI
47 Y. Zheng, J. Liu, J. Liang, M. Jaroniec, and S. Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis, Energy Environ. Sci., 5, 6717-6731 (2012).   DOI
48 J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, and X. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles, Nat. Commun., 3, 1139 (2012).   DOI
49 R. Anand, M. Malanga, I. Manet, F. Manoli, K. Tuza, A. Aykac, C. Ladaviere, E. Fenyvesi, A. Vargas Berenguel, R. Gref, and S. Monti, Citric acid-${\gamma}$-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery, Photochem. Photobiol. Sci., 12, 1841-1854 (2013).   DOI
50 X. Liu, F. Fu, K. Xu, R. Zou, J. Yang, Q. Wang, Q. Liu, Z. Xiao, and J. Hu, Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells, J. Mater. Chem. B, 2, 5358-5367 (2014).
51 P. Couleaud, V. Morosini, C. Frochot, S. Richeter, L. Raehm, and J. O. Durand, Silica-based nanoparticles for photodynamic therapy applications, Nanoscale, 2, 1083-1095 (2010).   DOI
52 D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, 808 nm driven $Nd^{3+}$-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging, Nanoscale, 7, 190-197 (2015).   DOI
53 Y. Guan, H. Lu, W. Li, Y. Zheng, Z. Jiang, J. Zou, and H. Gao, Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy, ACS Appl. Mater. Inter., 9, 26731-26739 (2017).   DOI
54 J. L. Vivero-Escoto, R. C. Huxford-Phillips, and W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications, Chem. Soc. Rev., 41, 2673-2685 (2012).   DOI
55 P. Yang, S. Gai, and J. Lin, Functionalized mesoporous silica materials for controlled drug delivery, Chem. Soc. Rev., 41, 3679-3698 (2012).   DOI
56 H. Wang, X. Zhu, R. Han, X. Wang, L. Yang, and Y. Wang, Near-infrared light activated photodynamic therapy of THP-1 macrophages based on core-shell structured upconversion nanoparticles, Microporous Mesoporous Mater., 239, 78-85 (2017).   DOI
57 L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy, ACS Appl. Mater. Interfaces, 8, 11945-11953 (2016).   DOI
58 D. K. Chatterjee and Z. Yong, Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells, Nanomedicine, 3, 73-82 (2008).   DOI
59 Y. Wang, X. Wang, and M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed., 51, 68-89 (2012).   DOI
60 L. Ge, C. Han, and J. Liu, Novel visible light-induced g-$C_3N_4/Bi_2WO_6$ composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B, 108-109, 100-107 (2011).   DOI
61 X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, Fe-g-$C_3N_4$-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, J. Am. Chem. Soc., 131, 11658-11659 (2009).   DOI
62 L. Feng, F. He, Y. Dai, B. Liu, G. Yang, S. Gai, N. Niu, R. Lv, C. Li, and P. Yang, A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy, ACS Appl. Mater. Inter., 9, 12993-13008 (2017).   DOI
63 L. Feng, F. He, B. Liu, G. Yang, S. Gai, P. Yang, C. Li, Y. Dai, R. Lv, and J. Lin, g-$C_3N_4$ Coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging, Chem. Mater., 28, 7935-7946 (2016).   DOI
64 R. Lv, P. Yang, F. He, S. Gai, G. Yang, Y. Dai, Z. Hou, and J. Lin, An imaging-guided platform for synergistic photodynamic/photothermal/chemo therapy with pH/temperature-responsive drug release, Biomaterials, 63, 115-127 (2015).   DOI