Browse > Article
http://dx.doi.org/10.5012/jkcs.2021.65.3.197

Study on Adsorption of PO43--P in Water using Activated Clay  

Hwang, Ji Young (Department of Applied Chemistry, Andong National University)
Jin, Ye Ji (Department of Applied Chemistry, Andong National University)
Ryoo, Keon Sang (Department of Applied Chemistry, Andong National University)
Publication Information
Abstract
In this study, activated clay treated with H2SO4 (20% by weight) and heat at 90 ℃ for 8 h for acid white soil was used as an adsorbent for the removal of PO43--P in water. Prior to the adsorption experiment, the characteristics of activated clay was examined by X-ray Fluorescence Spectrometry (XRF) and BET surface area analyser. The adsorption of PO43--P on activated clay was steeply increased within 0.25 h and reached equilibrium at 4 h. At 5 mg/L of low PO43--P concentration, roughly 98% of adsorption efficiency was accomplished by activated clay. The adsorption data of PO43--P were introduced to the adsorption isotherm and kinetic models. It was seen that both Freundlich and Langmuir isotherms were applied well to describe the adsorption behavior of PO43--P on activated clay. For adsorption PO43--P on activated clay, the Freundlich and Langmuir isotherm coefficients, KF and Q, were found to be 8.3 and 20.0 mg/g, respectively. The pseudo-second-order kinetics model was more suitable for adsorption of PO43--P in water/activated clay system owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal than the pseudo-first-order kinetics model. The results of study indicate that activated clay could be used as an efficient adsorbent for the removal of PO43-P from water.
Keywords
Activated clay; Acid white soil; Adsorption; Isotherm; $PO{_4}^{3-}-P$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Karageorgiou, K.; Paschalis, M.; Anastassakis, G. N. J. Hazardous Materials 2007, A139, 447.   DOI
2 Chen, J.; Kong, H.; Wu, D.; Chen, X.; Zhang, D.; Sun, Z. J. Hazardous Materials 2007, B139, 293.   DOI
3 Panagiotou, E.; Kafa, N.; Koutsokeras, L.; Koius, P.; Nikolaou, P.; Constantinides, G.; Vyrides, I. J. Cleaner Production 2018, 178, 419.   DOI
4 Bouraie, M. E.; Masoud, A. A. Applied Clay Science 2017, 140, 157.   DOI
5 Boeykens, S. P.; Piol, M. N.; Legal, L. S.; Saralegui, A. B.; Vazquez, C. J. Environmental Management 2017, 203, 888.   DOI
6 Lee, S.; Kim, C. W.; Paik, D. H. J. of the Korean Society of the Urban Environment 2015, 3, 189.
7 An, S. W.; Choi, J. Y.; Park, J. W. Korean Geo-environmental Society 2010, 1, 45.
8 Kim, S. B.; Kim, Y. G. J. Environ. Health. 2013, 39, 83.   DOI
9 Oehmen, A.; Lemos, P.C.; Carvalho, G.; Yuan, Z. G.; Keller, J.; Keller, L. I.; Blachall, M.A.M. Water. Res. 2007, 41, 2271.   DOI
10 Shin, G. W.; Choo, Y. D.; Kim, K. Y.; Ryu, H. D.; Lee, S. I. J. of the Korean Society of Environmental Engineering 2011, 33, 143.   DOI
11 Son H. J.; Kim, E. H.; Lee, Y. H. Korean J. Sanitation 1998, 13, 76.
12 He, Y. H.; Lin, H.; Dong Y. B.; Wang, L. Appl. Surf. Sci. 2017, 426, 995.   DOI
13 Li, J.; Li, B.; Huang, H. M.; Lv, X. M.; Zhao, N.; Guo, G. J.; Zhang, D. D. Sci. Total Environ. 2019, 687, 460.   DOI
14 Park, J. H.; Jung, D. I. Desalination 2011, 269, 104.   DOI
15 Zhal, V. K.; Matsuda, M.; Miyake, M. J. Hazardous Materials 2008, 160, 148.   DOI
16 Zhang, G.; Zhang, H.; Zhang, C.; Zhang, G.; Yang, F.; Yuan, G.; Gao, F. Pro. Biochem. 2013, 48, 893.   DOI
17 Ding, A.; Qu, F.; Liang, H.; Ma, J.; Han, Z.; Yu, H.; Guo, S.; Li, G. Chem. Eng. J. 2013, 223, 908.   DOI