• Title/Summary/Keyword: $SF_6$ Analysis

Search Result 280, Processing Time 0.029 seconds

Influence of SF6/N2 Gas Mixture Ratios on the Lightning Streamer Propagation Characteristics of 22 kV MV Circuit Breaker

  • Gandhi, R.;Chandrasekar, S.;Nagarajan, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1663-1672
    • /
    • 2018
  • In recent times, gas insulated medium voltage (MV) circuit breakers (CB) form a vital component in power system network, considering its advantages such as reduced size and safety margins. Gas insulation characteristics of circuit breakers are generally measured by lightning impulse (LI) test according to IEC standard 60060-1 as a factory routine test. Considering the environmental issues of $SF_6$ gas, many research works are being carried out towards the mixture of $SF_6$ gases for high voltage insulation applications. However, few reports are only available regarding the LI withstand and streamer propagation characteristics (at both positive and negative polarity of waveform) of $SF_6/N_2$ gas mixture insulated medium voltage circuit breakers. In this paper, positive and negative polarity LI tests are carried out on 22 kV medium voltage circuit breaker filled with $SF_6/N_2$ gas mixture at different gas pressures (1-5 bar) and at different gas mixture ratios. Important LI parameters such as breakdown voltage, streamer velocity, time to breakdown and acceleration voltage are evaluated with IEC standard LI ($1.2/50{\mu}s$) waveform. Weibull distribution analysis of LI breakdown voltage data is carried out and 50% probability breakdown voltage, scale parameter and shape parameter are evaluated. Results illustrate that the $25%SF_6+75%N_2$ gas filled insulation considerably enhances the LI withstand and breakdown strength of MV circuit breakers. LI breakdown voltage of circuit breaker under negative polarity shows higher value when compared with positive polarity. Results show that maintaining the gas pressure at 0.3 MPa (3 bar) with 10% $SF_6$ gas mixed with 90% $N_2$ will give optimum lighting impulse withstand performance of 22 kV MV circuit breaker.

The Frequency Spectrum Characteristics of Radiated Electromagnetic Wave by the Process of Discharge Progress in $SF_6$ ($SF_6$ 가스중 방전진전과정에 따른 방사전자파의 주파수 스펙트럼 분포 특성)

  • Park, K.S.;Kim, H.J.;Choi, B.J.;Jeun, Y.J.;Lee, D.H.;Lee, K.S.;Lee, D.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1747-1749
    • /
    • 2001
  • This paper simulated discharge progress and partial discharge using needle-plan electrodes system in $SF_6$, studied the distribution of frequency spectrum of the radiated electromagnetic waves using biconical antenna and spectrum analyzer. From results of this study, a method was introduced for measurement and analysis of the radiated electromagnetic waves in accordance with discharge progress in $SF_6$. Besides, according to the consideration of the mutual relation between frequency spectrum of the radiated electromagnetic waves and discharge progress, it was confirmed that detecting partial discharge and estimating discharge progress in $SF_6$ can be possible.

  • PDF

CAE Analysis of $SF_6$ Arc Plasma for a Gas Circuit Breaker Design (가스차단기 최적설계를 위한 $SF_6$ 아크 플라즈마 CAE 해석)

  • Lee Jong C.;Ahn Heui-Sub;Kim Youn J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.365-368
    • /
    • 2002
  • The design of industrial arc plasma systems is still largely based on trial and error although the situation is rapidly improving because of the available computational power at a cost which is still fast coming down. The desire to predict the behavior of arc plasma system, thus reducing the development cost, has been the motivation of arc research. To interrupt fault current, the most enormous duty of a circuit breaker, is achieved by separating two contacts in a interruption medium, $SF_{6}$ gas or air etc., and arc plasma is inevitably established between the contacts. The arc must be controlled and interrupted at an appropriate current zero. In order to analyze arc behavior in $SF_{6}$ gas circuit breakers, a numerical calculation method combined with flow field and electromagnetic field has been developed. The method has been applied to model arc generated in the Aachen nozzle and compared the results with the experimental results. Next, we have simulated the unsteady flow characteristics to be induced by arcing of AC cycle, and conformed that the method can predict arc behavior in account of thermal transport to $SF_{6}$ gas around the arc, such as increase of arc voltage near current zero and dependency of arc radius on arc current to maintain constant arc current density.

  • PDF

A Study on the Analysis of Characteristics of Permanent Magnetic Actuator for $SF_6$ Gas Insulated Recloser ($SF_6$ 가스절연 Recloser용 PMA에 대한 특성해석에 관한 연구)

  • Kim, Han-Kyun;Jang, Jeong-Won;Lee, Chang-Hwan;Suh, Wang-Byuck;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.713-714
    • /
    • 2006
  • $SF_6$ 가스절연 Recloser는 선로에 일시적인 과전류가 발생하면 개방 후 자동 재투입 하면서 선로의 정상적인 운전상태를 회복하고, 영구 고장 시에는 정해진 Sequence에 따라 개방, 투입을 반복한 후 개방완료 상태에 이르게 하는 보호기기이며, 조작부는 주로 Solenoid Actuator 방식을 채택해왔었다. 그러나 Solenoid Actuator 방식은 구조가 복잡하고 부품수가 많은 단점이 있어 최근에는 사용 부품수를 획기적으로 감소 시키고 조작 신뢰성을 증대시킨 Magnetic Actuator 방식을 채택하여 사용하는 경향을 보이고 있다. 이 Magnetic Actuator 방식은 구조가 간단하고 부품수가 적어 높은 신뢰성을 확보할 수 있고 유지 보수가 거의 필요하지 않는 장점을 가지고 있다. 이에 본 논문에서는 $SF_6$ 가스절연 Recloser의 조작부에 Magnetic Actuator 방식(이하 PMA (Permanent Magnetic Actuator))을 채용 하였으며, 이를 적용하기위한 입력전원 및 투입, 개방 코일을 패러미터로 하여 PMA의 동적특성을 실험하였으며, 이 실험 자료에 근거하여 27[kV] $SF_6$ 가스절연 Recloser의 PMA 조작부를 설계 및 제작하였다.

  • PDF

Catalytic Decomposition of SF6 by Hydrolysis over γ - Al2O3 Supported Metal Oxide Catalysts (금속산화물이 담지된 γ - Al2O3 촉매상에서 가수분해에 의한 SF6의 촉매분해)

  • Park, Hyeon-Gyu;Park, No-Kuk;Lee, Tae-Jin;Chang, Won-Chul;Kwon, Won-Tae
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • In order to improve the stability of ${\gamma}-Al_2O_3$ on hydrolysis of $SF_6$, the catalytic promoters were investigated in this study. The crystal phase of ${\gamma}-Al_2O_3$ is transformed to their ${\alpha}$-phase during hydrolysis of $SF_6$. Various metal oxides were applied as the promoter material that is Ga, Mg, and Zn and the promoter of 1, 5, and 10 wt% was impregnated over ${\gamma}-Al_2O_3$ by the impregnation method. Specially, it were confirmed in the catalytic activity tests and XRD analysis that ZnO/${\gamma}-Al_2O_3$ catalyst had the high activity for decomposition of $SF_6$ by catalytic hydrolysis and the crystal phase of ZnO promoted ${\gamma}-Al_2O_3$ was not transformed. From these results, it could be known that the stability of ${\gamma}-Al_2O_3$ is enhanced with the catalytic promotion of ZnO impregnated over the surface of catalyst.

The Fabrication of an Applicative Device for Trench Width and Depth Using Inductively Coupled Plasma and the Bulk Silicon Etching Process

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • In this study, we carried out an investigation of the etch characteristics of silicon (Si) film, and the selectivity of Si to $SiO_2$ in $SF_6/O_2$ plasma. The etch rate of the Si film was decreased on adding $O_2$ gas, and the selectivity of Si to $SiO_2$ was increased, on adding $O_2$ gas to the $SF_6$ plasma. The optical condition of the Si film with this work was 1,350 nm/min, at a gas mixing ratio of $SF_6/O_2$ (=130:30 sccm). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment, as well as the accumulation of high volatile reaction products on the etched surface. Field emission auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products.

Analysis of Predischarge Processes of $SF_6$ Gas Stressed by lmpulse Voltages under Nonuniform Electric Field (불평등전계중에서 임펄스전압에 대한 $SF_6$ 기체의 전구방전과정의 분석)

  • 이복희;이경옥;이창준;백승권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.85-93
    • /
    • 2000
  • In this paper, the predischarge propagation processes of SF\ulcorner gas stressed by impulse voltages under nonuniform electric field perturbed by a needle protrusion are described. The statistical and formative time-lags and the time interval between leader pulses were investigated on the basis of the predischarge current measured in the gas pressure range of 0.1~0.5 MPa. The predischarge current is closely related to the waveform, amplitude and polarity of applied votages, the gas pressure and the gap geometry. Both the positive and negative predischarge processes in nonuniform electric field develop in a regime of stepwise leader propagation leading to electrical breakdown. The mean of the time interval between leader pulses gives about a factor of 10 higher for the negative than for the positive leader current puls-es. According as the gas pressure increases, the statistical time-lag was almost unchangeable, but the formative time-lag was gradually decreased.

  • PDF

A Study on the Improvement of the Electron Transport Properties in $SF_{6+}Ar$ Mixtures Gas ($SF_{6+}Ar$혼합기체의 전자수송특성 개선에 관한 연구)

  • 하성철;김상남;유회영;서상현;임상원;전병훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • In this paper, the electron swarm parameters in the 0.5% and 0.2% SF\ulcorner+Ar mixtures are measured by time of flight method over the E/N(Td) range from 30 to 300(Td). The measurements have been carried out by the double shutter drift tube with variable drift distance from the cathod. A two-term approximation of the boltzmann equation analysis and Monte Carlo simulation have been also used to study electron transport coefficients. We have calculated W, $ND_L,\;ND_T,\;\alpha,\;\eta,\;\alpha-\eta$, and the limiting breakdown electric field to gas mixtures ratio in pure $SF_6$+Ar mixtures. The electron energy distribution function has been analysed in $SF_6$+Ar mixtures at E/N : 200(Td) for a case of the equilibrium region in the mean electron energy. The measured results and the calculated results have been compared each other.

  • PDF

Cold Gas Analysis of SF6 Gas Circuit Breaker Using Analysis of Forces in Driving Mechanism (조작기 내 힘 해석을 통한 초고압 SF6 가스 차단기의 냉가스 유동 해석)

  • Park, Sang-Hun;Kim, Hong-Kyu;Jung, Hyun-Kyo;Lee, Yong-Han
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.639-640
    • /
    • 2008
  • 본 논문에서는 조작기에 의해 동작하는 초고압 SF6 가스 차단기의 냉가스 유동 해석에 대해 다룬다. 조작기 내에서 작용하는 힘들을 해석하여 나온 변위를 이용하여 차단기의 동작을 모의하였다. 차단기의 냉가스 유동 해석 시 FVFLIC 법을 이용하여 압력을 결정하였고 이것은 조작기의 힘 해석에 사용되었다. 해석 결과인 스트로크, 힘, 피스톤 전면 압력 상승은 실험 결과들과 비교하여 검증되었다.

  • PDF

Comparative Analysis of PD Characteristics Under SF6, g3 and Dry Air Insulation (SF6, g3 및 Dry Air 절연에서 PD 특성 비교 분석)

  • Shin, Han-sin;Kim, Nam-Hoon;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.490-494
    • /
    • 2020
  • Sulphur hexafluoride (SF6) is mostly used as a current-insulating medium in gas-insulated switchgears (GIS), owing to its excellent dielectric strength and arc-extinguishing performance. The global warming potential (GWP) of SF6, however, is 23,900 times that of CO2, and its life time in the atmosphere is 3,200 years. For these reasons, new eco-friendly gases to replace SF6 are required. In this study, the partial discharge (PD) characteristics of green gas for grid (g3) and dry air (N2/O2) were analyzed to compare with those of SF6. A PD electrode system was designed to simulate the protrusion defect in GISs and fabricated for experimentation. To compare the PD characteristics of each gas, the discharge inception voltage (DIV), discharge extinction voltage (DEV), discharge magnitude, discharge pulse number, and phase pattern were analyzed. Results from this study are expected to provide fundamental materials for the design of eco-friendly GISs.