• 제목/요약/키워드: $RuO_2$/Ti Electrode

검색결과 57건 처리시간 0.026초

Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti

  • Auguste, Appia Foffie Thiery;Quand-Meme, Gnamba Corneil;Ollo, Kambire;Mohamed, Berte;Sahi placide, Sadia;Ibrahima, Sanogo;Lassine, Ouattara
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.82-89
    • /
    • 2016
  • In this work, a ruthenium dioxide electrode has been prepared by thermal decomposition at 400 ℃ then used for the oxidation of commercial amoxicillin. The physical characterization showed that RuO2 electrode presents a mud cracked structure. Its electrochemical characterization has revealed an increase of the voltammetric charge in acid electrolyte compared to neutral electrolyte indicating the importance of protons in its surface redox processes. The voltammetric study of the oxidation of amoxicillin has been investigated. It has been obtained that the oxidation of amoxicillin is controlled by both adsorption and diffusion processes. Moreover, the oxidation of amoxicillin occurs via direct and indirect processes in free or electrolyte containing chlorides. Through preparative electrolysis, enhancement of amoxicillin oxidation was observed in the presence of chloride where the amoxicillin degradation yield reached more than 50 % compared to less than 5% in the absence of chlorides. Spectrophotometric investigations have revealed the degradation of intermediates absorbing at 350 nm.

전기화학적 공정의 운전인자에 따른 산화제 생성과 염료 분해 특성 (Characteristic of Oxidants Production and Dye Degradation with Operation Parameters of Electrochemical Process)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제18권11호
    • /
    • pp.1235-1245
    • /
    • 2009
  • The purpose of this study is to investigate electro-generation of free Cl, $ClO_2$, $H_2O_2$ and $O_3$ and degradation of Rhodamine B in solution using Ru-Sn-Sb electrode. Electrolysis was performed in one-compartment reactor using a dimensionally stable anode(DSA) of Ru-Sn-Sb/Ti as the working electrode. The effect of applied current (0.5-3 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and concentration (0.5-2.5 g/L), air flow rate (0-3 L/min) and solution pH (3-11) was evaluated. Experimental results showed that concentration of 4 oxidants was increased with increase of applied current, however optimum current for RhB degradation was 2 A. The generated oxidant concentration and RhB degradation of the of Cl type-electrolyte was higher than that of the sulfate type. The oxidant concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.75 g/L. Optimum air flow rate for the oxidants generation and RhB degradation was 2 L/min. $ClO_2$ and $H_2O_2$ generation was decreased with the increase of pH, whereas free Cl and $O_3$ was not affected by pH. RhB degradation was increase with the pH decrease.

Eu이 도핑된 LiGdF4의 Down-conversion을 이용한 염료감응형 태양전지의 효율 향상 (Improving Efficiencies of DSC by Down-conversion of LiGdF4:Eu)

  • 김현주;송재성;김상수
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.323-328
    • /
    • 2004
  • Down-conversion of Eu$^{3+}$ doped LiGdF$_4$ (LGF) for increasing the cell efficiency on dye-sensitized Ti $O_2$ solar cells has been studied. The dye sensitized solar cell (DSC) consisting of mesoporous Ti $O_2$ electrode deposited on transparent substrate, an electrolyte containing I$^{[-10]}$ /I$_3$$^{[-10]}$ redox couple, and Pt counter electrode is a promising alternative to the inorganic solar cell. The structure of DSC is basically a sandwich type, viz., FTO glass/Ru-red dye-absorbed Ti $O_2$/iodine electrolyte/sputtered Pt/FTO glass. The cell without down converter had open circuit potential of approximately 0.66 Volt, the short circuit photocurrent density of 1.632 mA/$\textrm{cm}^2$, and fill factor of about 50 % at the excitation wavelength of 550 nm. In addition, 5.6 mW/$\textrm{cm}^2$ incident light intensity beam was used as a light source. From this result, the calculated monochromatic efficiency at the wavelength of 550 nm of this cell was about 9.62 %. The incident photon to current conversion efficiency (IPCE) of N3 used as a dye in this work is about 80 % at around 590 nm and 610 nm, which is the emission spectrum of Eu$^{3+}$ doped LGF, results in efficiency increasing of DSC.C.

고분자 이온교환수지를 이용한 의료.식품용 멸균제 이산화염소의 전기화학분해 발생 (Electrochemical Generation of Chlorine Dioxide Using Polymer Ion Exchange Resin)

  • 노승백;김상섭
    • 공업화학
    • /
    • 제23권1호
    • /
    • pp.86-92
    • /
    • 2012
  • 이온교환수지(ion exchange resin; IER)를 이용하여 이산화염소($ClO_2$)의 전구체 용액인 아염소산나트륨($NaClO_2$) 용액으로부터 아염소산이온($ClO_2^-$)을 흡착시킨 후 전기분해장치(electrolysis system)에 의한 이산화염소 가스 발생 특성을 조사하였다. 이온교환수지는 강염기성 음이온교환수지를 사용하였으며, 전극으로는 Ru, Ir이 코팅된 Ti plate를 사용하였다. 반응조의 교반속도, 온도, 아염소산 제조농도, 이온교환수지의 투입량과 형태에 따라 이온교환수지의 아염소산이온($ClO_2^-$) 흡착량에 미치는 영향을 조사하고 최대 흡착량을 나타내는 이온교환수지를 도출하였다. 전기분해장치에 의한 이산화염소의 발생 추이를 관찰하고 발생 목표값에 최적화된 조건을 실험계획법인 반응표면분석(response surface design)으로 선정하였다. 최대 흡착량을 나타내는 강염기성 음이온교환수지는 SAR-20 (TRILITE Gel type II형)이며 그 흡착량은 약 110 mg/IER (g)으로 관찰되었으며, 전기분해장치의 이산화염소 발생 최적조건은 멸균 목표값인 900~1000 ppm, 1 h에서 정전류는 전류인가 전극의 면적을 기준으로 $A/dm^2$, $N_2$ gas 유량은 4.7 L/min이었다.

multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동 (Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells)

  • 김명석;천종훈;정대영;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

카바졸과 페노시아진을 이용한 염료감응형 태양전지의 염료 합성과 광적특성 (Synthesis and Photovoltaic Properties of Dendritic Photosensitizers containing Carbazole and Phenothiazine for Dye-sensitized Solar Cells)

  • 김명석;정대영;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline $TiO_2$ electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline $TiO_2$. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

산소 분압의 변화에 따른 Cr-Doped SrZrO3 페로브스카이트 박막의 저항변화 특성 (Resistive Switching Behavior of Cr-Doped SrZrO3 Perovskite Thin Films by Oxygen Pressure Change)

  • 양민규;박재완;이전국
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.257-261
    • /
    • 2010
  • A non-volatile resistive random access memory (RRAM) device with a Cr-doped $SrZrO_3/SrRuO_3$ bottom electrode heterostructure was fabricated on $SrTiO_3$ substrates using pulsed laser deposition. During the deposition process, the substrate temperature was $650^{\circ}C$ and the variable ambient oxygen pressure had a range of 50-250 mTorr. The sensitive dependences of the film structure on the processing oxygen pressure are important in controlling the bistable resistive switching of the Cr-doped $SrZrO_3$ film. Therefore, oxygen pressure plays a crucial role in determining electrical properties and film growth characteristics such as various microstructural defects and crystallization. Inside, the microstructure and crystallinity of the Cr-doped $SrZrO_3$ film by oxygen pressure were strong effects on the set, reset switching voltage of the Cr-doped $SrZrO_3$. The bistable switching is related to the defects and controls their number and structure. Therefore, the relation of defects generated and resistive switching behavior by oxygen pressure change will be discussed. We found that deposition conditions and ambient oxygen pressure highly affect the switching behavior. It is suggested that the interface between the top electrode and Cr-doped $SrZrO_3$ perovskite plays an important role in the resistive switching behavior. From I-V characteristics, a typical ON state resistance of $100-200\;{\Omega}$ and a typical OFF state resistance of $1-2\;k{\Omega}$, were observed. These transition metal-doped perovskite thin films can be used for memory device applications due to their high ON/OFF ratio, simple device structure, and non-volatility.