• 제목/요약/키워드: $RuO_2$/Ti 전극

검색결과 50건 처리시간 0.02초

광전기촉매 공정과 전기/UV 공정을 이용한 염료의 색 제거

  • 박영식;김동석
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2008년도 추계학술발표회 발표논문집
    • /
    • pp.452-457
    • /
    • 2008
  • 분말 TiO$_2$를 코팅한 전극은 전기저항으로 인해 0.5 A 이상의 전류를 인가할 수 없었으며, 1 A를 적용하였을 때 60분의 반응시간 후 최종 RhB 농도를 측정한 결과 Ru/Ti 전극의 RhB 농도 감소 가장 큰 것으로 나타났고, Ru/Ti > Ti > SG-TiO$_2$ > Th-TiO$_2$로 나타났다. 전기분해 공정만 적용한 경우 RhB 농도 감소의 순서는 Ru/Ti = Ti > SG-TiO$_2$ > Th-TiO$_2$ 전극의 순서로 나타났다. UV만 적용한 경우 RhB 제거는 작았으며, Ti와 Ru/Ti 전극은 UV만 적용한 경우와 RhB 제거농도가 비슷하였는데 이는 전극 표면에서 광촉매 반응이 일어나지 않는다는 것을 의미한다. 반면 TiO$_2$를 전극 표면에 형성하거나 코팅한 전극은 UV만 적용한 경우보다 RhB 농도가 낮게 나타났고, TiO$_2$가 형성되거나 코팅된 전극은 P-TiO$_2$ > Th-TiO$_2$ > SG-TiO$_2$의 순서로 나타났으나 차이는 크지 않았다. 광전기촉매 공정에서 시너지 효과가 거의 없는 것은 전극 표면에 코팅되거나 형성된 TiO$_2$의 양이 적고 광촉매 반응에 의한 분해 정도가 낮아 전자-정공의 재결합 감소효과가 적기 때문인 것으로 사료되었다. Th-TiO$_2$와 SG-TiO$_2$ 전극의 경우 전해질로 Na$_2$SO$_4$를 사용한 경우의 RhB 농도가 NaCl을 사용한 경우보다 RhB 낮게 나타났으나, Ti와 Ru/Ti 전극의 경우는 반대 현상이 나타났다. 이와 같은 결과는 광촉매 반응이 높은 Th-TiO$_2$와 SG-TiO$_2$ 전극에서의 Cl$^-$의 광촉매 반응 저해현상이 높게 나타났기 때문이라고 사료되었다. 반면 DSA 전극인 Ti와 Ru/Ti 전극의 경우 광촉매 반응이 거의 나타나지 않기 때문에 주반응인 전기분해 반응에서의 촉진 반응이 지배적이기 때문에 Th-TiO$_2$와 SG-TiO$_2$ 전극과는 정 반대의 현상이 나타났다고 사료되었다. 전기/UV 공정에서는 최적 전류는 0.75 A, NaCl 투입량은 0.5 g/L로 나타났으며, 최적 UV램프 전력은 16 W인 것으로 나타났다.

  • PDF

1, 2성분계 DSA 전극의 제조와 성능 평가

  • 박영식;김동석
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2008년도 추계학술발표회 발표논문집
    • /
    • pp.464-467
    • /
    • 2008
  • 성능이 우수한 다성분계 전극을 개발하기 위하여 Pt, Ru, Sn, Sb 및 Gd의 5 종류 금속을 이용하여 1성분계 전극의 성능과 산화제 생성량 및 2성분계 전극의 성능과 산화제 생성 경향을 고찰하여 다음의 결과를 얻었다. 1. RhB 농도 감소는 Ru/Ti > Sb/Ti > Pt/Ti > Sn/Ti > Gd/Ti 전극의 순서로 나타났으나 단위 전력당 2분간 제거된 RhB 농도 감소는 Ru/Ti > Sb/Ti > Pt/Ti > Gd/Ti > Sn/Ti 전극의 순서로 나타났다. 생성된 산화제 농도는 ClO$_2$ > free Cl > H$_2$O$_2$ > O$_3$의 순서였으며 Gd/Ti 전극의 경우 산화제가 거의 생성되지 않는 것으로 나타났다. 모든 전극에서 OH 라디칼이 거의 생성되지 않는 것으로 나타났다. Ru/Ti와 Sb/Ti 전극의 높은 RhB 분해와 산화제 생성 농도는 정확하지는 않지만 상관관계가 있는 것으로 나타났다. 2. Ru계 2성분 전극(Ru-Gd/Ti, Ru-Pt/Ti, Ru-Sn/Ti 및 Ru-Sb/Ti)은 모두 1성분계 전극보다 RhB 분해성능이 높아지는 것으로 나타났으며, Ru계 2성분 전극 중 가장 성능이 우수하였던 전극은 Ru:Sn=9:1 전극으로 나타났다. Sn-Sb/Ti 전극은 Sn:Sb=1:9의 전극 성능이 우수한 것으로 나타났으나 Sb/Ti 전극과의 차이는 크지 않은 것으로 나타났다. Pt계 전극(Pt-Gd/Ti, Pt-Sn/Ti, Pt-Sb/Ti)은 대체로 두 성분 혼합에 따른 RhB 분해효과 상승은 없는 것으로 나타났다. 2성분계 전극 중 RhB 제거 성능이 가장 우수하였던 Ru:Sn=9:1 전극에서 4종류의 산화제 생성 농도가 높은 것으로 나타났다. Ru:Pt=9:1 전극은 RhB 분해 성능이 5 전극 중 가장 낮았으며, 산화제도 생성량이 가장 적은 것으로 나타났다. Ru-Sn/Ti 계 전극의 RhB 분해 성능과 산화제 생성 농도가 실험한 모든 1, 2성분계 전극에서 높은 것으로 나타나 향후 3, 4성분계 전극 제조시 이를 바탕으로 제조하고 다른 물질들은 보조재료로서 사용할 필요성이 있는 것으로 사료되었다.

  • PDF

양극산화법을 통해 제조한 IrO2-RuO2 촉매를 포함하는 고성능 수전해 산소발생용 TiO2 나노튜브 전극 (The TiO2 based electrode consisting binary catalysts which is prepared by anodization for water oxidation application)

  • 유현석;오기석;이기백;최진섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.191.2-191.2
    • /
    • 2016
  • $TiO_2$는 우수한 화학적 및 물리적 안정성 때문에 수전해 장기간 사용에 적합한 전기화학 전극으로 여겨진다. 큰 표면적을 갖는 $TiO_2$를 제조하기 위한 수많은 방법 중 양극산화(anodization)는 비교적 간단하고 저렴한 공정으로 인하여 매우 실용적인 방법으로서 알려져 있다. 특히, 고도로 정렬 된 $TiO_2$ 나노튜브($TiO_2$ NTs) 의 경우에는 분말상과 달리 전극제조를 위해 추가적인 접착제를 필요하지 않다. 그러나, $TiO_2$는 일반적으로 절연 특성을 나타내기 때문에 전극의 활용을 위해서는 본질적으로 촉매의 사용이 불가피하다. 다수의 전기 촉매 중, $IrO_2$$RuO_2$는 수전해 분야에 잘 알려진 산화 촉매이다. 그럼에도 불구하고, 특유의 높은 종횡비 때문에 $TiO_2$ 나노튜브에 전기 촉매를 균일하게 도핑하는 것은 많은 어려움이 따른다. 이를 해결하기 위한 방법으로 $RuO_2$를 도핑하기 위한 단일공정 $TiO_2$ 양극산화 기술이 보고된 바 있다. 본 연구에서는 2원 촉매($IrO_2$$RuO_2$)를 $TiO_2$ 나노튜브에 도핑하기 위한 단일공정 양극산화 기술에 대하여 연구하였다. 전구물질로써 $KRuO_4$($RuO_2$ 전구체)와 IrOx 나노입자(IrOx NPs, $IrO_2$ 전구체)를 사용하였다. 특히, IrOx를 나노 입자는 $IrCl_3$로부터 중간 매체로 합성된다. IrOx는 단일공정 양극산화 중에 $TiO_2$ 나노튜브 상에 도핑 가능한 이온 형태인 $IrO_4$-로 전환될 수 있다. 제조된 시료는 열처리 후 바로 전극으로 사용되었으며 SEM, XPS, TEM, ICP-OES 등으로 정성, 정량 분석을 수행하였다. LSV와 EIS를 통해 전기화학적 성능 평가가 이루어졌으며, LSV를 통해 포집한 기체는 가스 크로마토그래피를 사용하여 정량분석한 후 그 효율을 측정하였다.

  • PDF

Ru 코팅량에 따른 $RuO_2$/Ti 전극의 염소 발생 (Generation of Free Chlorine Using $RuO_2$/ Ti Electrode with Various Amount of Ru)

  • 이준철;박대원
    • 대한환경공학회지
    • /
    • 제34권11호
    • /
    • pp.715-719
    • /
    • 2012
  • 단위면적당($cm^2$) 루테늄의 코팅량이 1.5 mg, 2.5 mg, 3.5 mg, 5.5 mg, 8.5 mg의 $RuO_2$/Ti 전극을 제조하여 코팅량에 따른 전기화학적 특성 차이와 염소 발생에 미치는 영향을 조사하였다. 순환전압 실험 결과 루테늄이 코팅된 전극의 염소 발생 과전압은 약 1.15 V (vs. Ag/AgCl)로 거의 일정하였다. 그러나 교류 임피던스 분광법, 동전위분극실험 결과 단위면적당($cm^2$) 루테늄의 코팅량이 2.5 mg, 3.5 mg $RuO_2$/Ti 전극의 저항은 각각 $0.4582{\Omega}$, $0.5267{\Omega}$, 부식속도는 각각 0.082 mm/yr, 0.058 mm/yr로 내구성이 가장 우수하였다. 염소 발생량은 단위면적당($cm^2$) 루테늄의 코팅량 3.5 mg 전극이 15.2 mg/L로 가장 높게 측정되었다.

아염소산나트륨의 무격막 전기분해에 의한 이산화염소 생성: 양전극 재질에 따른 영향 (Electrochemical Generation of Chlorine Dioxide from Sodium Chlorite Using Un-Divided Electrochemical Cell: Effect of Anode Materials)

  • 권태옥;박보배;노현철;문일식
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.275-282
    • /
    • 2010
  • 아염소산나트륨($NaClO_2$)의 무격막 전기분해(un-divided electrolysis)에 의한 이산화염소(chlorine dioxide; $ClO_2$) 제조에서 양전극(anode) 재질에 따른 이산화염소수 발생특성을 조사하였다. 양전극으로는 $IrO_2$-coated Ti, $RuO_2$-coated Ti, DSA(dimensionally stable anode) 전극을 사용하였으며, 음전극으로는 Pt-coated Ti 전극을 사용하였다. 다양한 양전극을 사용한 무격막 전해셀(un-divided electrochemical cell) 시스템에서 이산화염소의 전구체인 아염소산나트륨 ($NaClO_2$) 농도, 전해질로 사용된 염화나트륨(NaCl) 농도 그리고 전구체 용액의 전해셀 체류시간(cell residence time;$t_R$), 전구체 용액의 초기 pH 그리고 무격막 전해셀에 공급된 전류(current; A)와 같은 운전 파라미터가 이산화염소수 발생에 미치는 영향을 조사하고 최적 운전조건을 도출하였다. $IrO_2$-coated Ti, $RuO_2$-coated Ti 그리고 DSA 양전극 시스템에서 최적 전해셀 체류시간은 각각 약 2.27, 1.52, 1.52 s, 전구체 용액의 초기 pH는 약 2.3, 최적 아염소산나트륨 농도는 $IrO_2$-coated Ti와 $RuO_2$-coated Ti 양전극 시스템이 약 0.43 g/L, DSA 양전극 시스템이 약 0.32 g/L 그리고 최적전해질 농도는 약 5.85 g/L로 나타났으며 무격막 전해셀에 공급된 최적 전류는 약 0.6 A로 나타났다. 산출된 최적 무격막 전해셀 조건에서 이산화염소수 발생을 위한 $IrO_2$-coated Ti, $RuO_2$-coated Ti 그리고 DSA 양전극 시스템의 전류효율(current efficiency; C.E.%)과 에너지 소모율(energy consumption; E.C. $W{\cdot}hr/g-ClO_2$)은 각각 약 79.80, 114.70, 70.99% 그리고 1.38, 1.03, $1.61W{\cdot}hr/g-ClO_2$로 나타났다.

알칼리 수전해에서 전극재질에 따른 수소생산 특성 (The Characteristics of Hydrogen Production According to Electrode Materials in Alkaline Water Electrolysis)

  • 문광석;박대원
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.34-39
    • /
    • 2015
  • 본 연구에서는 중온에서 수소생산이 가능한 무격막형 알칼리수전해 장치를 제작하여 전극재질에 따른 수소생산 특성을 확인하였다. 전극재질($IrO_2/Ti$, $RuO_2/Ti$, Ti)별 전기화학적 특성을 확인한 결과 $RuO_2/Ti$에서 가장 높은 효율을 나타내었고, 전해질 농도별 수소생산량 실험 결과, 전해질 농도와 수소생산량은 비례하는 경향을 보였으며 30% KOH 조건에서 $118.9m^3/m^3/day$로 가장 높은 수소생산량을 확인할 수 있었다. 전극재질별 수소생산량을 확인한 실험에서는 anode($IrO_2/Ti$)와 cathode($RuO_2/Ti$)로 조합 시 $157.55m^3/m^3/day$$IrO_2/Ti$를 cathode로 조합한 결과에 비해 약 6.97% 높은 수소생산량을 보였다. 이는 DSA전극의 전기화학적 활성도 향상에 의한 수소생산량 증대와 기존 전극에 비해 내구성이 향상되어 안정적인 알칼리 수전해가 가능한 것으로 사료된다.

RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리 (Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes)

  • 김아람;박현정;원용선;이태윤;이제근;임준혁
    • 청정기술
    • /
    • 제22권1호
    • /
    • pp.16-28
    • /
    • 2016
  • 섬유산업은 염색폐수의 농도가 높고 방출량이 많아 고도의 공해산업으로 알려져 있다. 염색폐수에는 색도물질 뿐만 아니라 다량의 유기화합물과 불용성 물질이 섞여 있다. 합성염료 중 아조(azo) 염료는 특히 오염물질의 배출이 많은 것으로 알려져 있다. 전기화학적 폐수처리방법은 전극의 산화·환원반응에 의해 색도와 유기물 등을 처리하는 방법으로 다른 폐수처리방법들에 비해 반응기가 작고 경제적이고 간단하며 오염물제거속도가 빠르다. 본 연구에서는 diazo 화합물인 CI Direct Blue 15 염색 폐수의 전기화학적 분해특성을 연구하였다. 실험은 전극재질과 조업조건을 달리하여 그에 따른 분해효율을 알아보고자 하였으며, 탈색 효율을 향상시킬 수 있는 최적전극 재질과 조업조건을 알아보고자 하였다. 조업조건으로는 전해질 농도, 전류밀도, 반응 온도, 초기 pH의 영향을 검토하였다. 음극은 stainless steel 전극을 사용하였고, 양극은 graphite와 RuO2/Ti, PtO2/Ti, IrO2/Ti를 사용하여 조업조건에 따른 각 전극의 염색폐수 분해성능 실험을 수행하였다. 그 결과 전해질의 농도와 전류밀도 증가에 따라 전기분해 효율은 증가하였다. 양극 재질에 따른 전기분해 효율은 산성 전해질 조건에서 RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite 순이었고 중성과 염기성에서는 RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite의 순으로 나타났다. 따라서 염색 폐수의 전기분해 처리에는 RuO2/Ti와 IrO2/Ti가 가장 효율적인 양극재질이었다.

$Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ 박막의 성장 및 전기적 특성에 관한 연구

  • 김도형;이재찬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.85-85
    • /
    • 1999
  • Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT)는 높은 유전율로 인해 강유전체 메모리 소자의 응용을 위한 연구가 되고 있으며 또한 전왜(electrostrictive)성을 갖고 있어 이력현상을 갖지 않음으로 최근 들어 미세전기기계소자(MEMS)로의 연구가 활발히 되고 있다. 본 연구에서는 MEMS 소자로서의 응용을 위해 저응력 SiNx가 형성된 Si 기판위에 Pt 전극 혹은 산화물 전극 SrRuO3를 갖는 PMN-PT 박막 캐패시터를 제조하였다. 박막 하부의 구조는 금속전극의 경우 Pt/Ti/LTO/SiNx/Si이고 산화물전극은 SrRuO3/Ru/SiNx/Si의 구조를 갖는다. PMN-PT 박막은 alkoxide를 기반으로 회전 coating 방법을 사용하여 박막 하부층의 변화를 주어서 성장시켰다. PMN-PT 용액의 합성은 분말합성법에서 사용하는 columbite 방법을 응용하여 상대적으로 반응정도가 낮은 Mg를 Nb와 우선 반응하여 Mg-Nb solution을 얻고 Pb-acetate 용액과 합성하여 PMN을 제조한 후 PT를 반응시켜서 제조하였다. PMN-PT 박막에서 동일한 공정조건 하에서 박막 하부층의 구조에 따라서 PMN-PT 박막의 조성이 A2B2O6의 조성을 가지는 파이로클러어상이 형성되거나 또는 ABO3인 페로브스카이트상이 형성되는 것을 관찰하였다. 금속 전극인 Pt를 하부전극으로 사용한 경우는 혼재상이 형성되어 패로브스카이드 PMN-PT를 얻기 위해 seed layer로서 PbTiO3를 사용하였으며 이러한 seed layer 위에 형성된 PMN-PT를 형성하는 경우 rutile 구조인 RuO2 위에 성장시킨 PMN-PT는 파이로클로어와 페로브스카이트의 혼재상이 얻어졌으나 pseudo-perovskite 구조인 SrRuO3 박막 위에 형성된 PMN-PT 박막에서는 페로브스카이트가 주된 상으로 얻어졌다. 즉 하부층(전극 또는 seed layer)으로 perovskite 구조를 갖는 박막을 형성하게 되면 페로브스카이트를 갖는 PMN-PT 박막을 얻을 수 있었다. 전기적인 특성은 상부전극으로 Pt를 사용하여 HP 4194A로 측정을 하였다. PT seed layer를 포함한 PMN-PT 박막은 유전상수 1086과 유전손실 2.75%을 가졌다.

  • PDF

3, 4성분계 DSA 전극의 제조와 성능 평가

  • 박영식;김동석
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2008년도 추계학술발표회 발표논문집
    • /
    • pp.482-487
    • /
    • 2008
  • 성능이 우수한 다성분계 전극을 개발하기 위하여 Ru를 주 전극성분으로 Pt, Sn, Sb 및 Gd를 보조 전극성분으로 하여 3, 4성분계 전극의 성능과 산화제 생성량 및 전극 표면 분석을 행하여 다음의 결과를 얻었다. 1. 2분 동안 단위 W당 제거된 RhB 농토는 Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1로 나타났다. Ru:Sn:Sb=9:1.1 전극에서 발생하는 free Cl, ClO$_2$ 및 H$_2$O$_2$농도가 다른 전극보다 높은 것으로 나타나 산화제 생성경향과 RhB 분해율과는 상관관계가 있는 것으로 사료되었다. 4성분계 전극 중에서 Ru:Sn:Sb:Gd 전극의 성능이 가장 우수한 것으로 나타났으나 3성분계 전극인 Ru:Sn:Sb=9:1.1 전극보다 성능이 떨어지는 것으로 나타났다. Ru:Sn:Sb=9:1:1 전극에서 생성되는 산화제 농도가 다른 두 종류의 산화제 농도보다 높은 것으로 나타났고 4성분 전극의 경우 Ru:Sn:Sb:Gd 전극의 산화제 농도가 Ru:Sn:Sb:Gd 전극이 높거나 유사한 경우로 나타나 산화제 생성 경향과 RhB분해 능과는 상관관계가 있는 것으로 나타났다. 초기 RhB 분해 속도가 높은 전극의 COD 제거율도 높은 것으로 나타났다. OH 라디칼은 발생하지 않지만 염소계 산화제 농도가 높고 RhB제거율이 높아 Ru를 주 성분으로 한 전극의 RhB분해는 주로 간접 산화작용에 의한 것이며, 개발된 3, 4성분계 산화물 전극은 간접 산화용 전극임을 알 수 있었다. 에칭을 하기 전의 Ti판은 표면이 매끄러운 것으로 나타났으며, 35% 염산으로 에칭한 후의 Ti메쉬는 매우 거친 표면조직을 가지는 것을 관찰할 수 있었다. Ru:Sn:Sb=9:1:1 전극과 Ru:Sn:Sb:Gd 전극의 SEM 사진을 관찰한 결과 두 전극 모두 전극 물질이 균일하게 도포되어 있었으며, 두 전극 모두 열소성을 통해 전극 성분을 코팅할 때 발생하는 "mud crack"이 발생한 것이 관찰되었다 EDX 분석에서 Cl이 관찰되었는데, 전극 성분의 불완전 산화로 인한 비양론적 산화물 때문이며 이는 RhB 분해성능과 관련 있는 것으로 사료되었다.

  • PDF