Electrochemical Generation of Chlorine Dioxide from Sodium Chlorite Using Un-Divided Electrochemical Cell: Effect of Anode Materials

아염소산나트륨의 무격막 전기분해에 의한 이산화염소 생성: 양전극 재질에 따른 영향

  • Received : 2009.11.17
  • Accepted : 2009.12.21
  • Published : 2010.04.30

Abstract

A characteristic study of aqueous chlorine dioxide generation from sodium chlorite($NaClO_2$) by an undivided electrochemical cell with different anode materials were performed. $IrO_2$-coated Ti, $RuO_2$-coated Ti and DSA were used as anode materials and Pt-coated Ti electrode was used as cathode. Various electrochemical cell operating parameters such as cell residence time($t_R$), initial feed solution pH, sodium chlorite and sodium chloride(NaCl) concentration and applied current for the generation of chlorine dioxide in an un-divided cell were investigated and optimized. Estimated optimal cell residence times in $IrO_2$-coated Ti, $RuO_2$-coated Ti and DSA anode material systems were around 2.27, 1.52 and 1.52 sec, respectively. Observed optimum initial feed solution pH was around 2.3 in all anode material systems. Optimum sodium chlorite concentrations in $IrO_2$-coated Ti, $RuO_2$-coated Ti and DSA anode systems were around 0.43, 0.43 and 0.32 g/L, respectively. Optimum electrolyte concentration and applied current were around 5.85 g/L and 0.6 A in all anode systems. Current efficiencies of $IrO_2$-coated Ti, $RuO_2$-coated Ti and DSA anode systems under optimum conditions were 79.80, 114.70 and 70.99%, respectively. Obtained energy consumptions for the optimum generation of chlorine dioxide were 1.38, 1.03 and $1.61W{\cdot}hr/g-ClO_2$, respectively.

아염소산나트륨($NaClO_2$)의 무격막 전기분해(un-divided electrolysis)에 의한 이산화염소(chlorine dioxide; $ClO_2$) 제조에서 양전극(anode) 재질에 따른 이산화염소수 발생특성을 조사하였다. 양전극으로는 $IrO_2$-coated Ti, $RuO_2$-coated Ti, DSA(dimensionally stable anode) 전극을 사용하였으며, 음전극으로는 Pt-coated Ti 전극을 사용하였다. 다양한 양전극을 사용한 무격막 전해셀(un-divided electrochemical cell) 시스템에서 이산화염소의 전구체인 아염소산나트륨 ($NaClO_2$) 농도, 전해질로 사용된 염화나트륨(NaCl) 농도 그리고 전구체 용액의 전해셀 체류시간(cell residence time;$t_R$), 전구체 용액의 초기 pH 그리고 무격막 전해셀에 공급된 전류(current; A)와 같은 운전 파라미터가 이산화염소수 발생에 미치는 영향을 조사하고 최적 운전조건을 도출하였다. $IrO_2$-coated Ti, $RuO_2$-coated Ti 그리고 DSA 양전극 시스템에서 최적 전해셀 체류시간은 각각 약 2.27, 1.52, 1.52 s, 전구체 용액의 초기 pH는 약 2.3, 최적 아염소산나트륨 농도는 $IrO_2$-coated Ti와 $RuO_2$-coated Ti 양전극 시스템이 약 0.43 g/L, DSA 양전극 시스템이 약 0.32 g/L 그리고 최적전해질 농도는 약 5.85 g/L로 나타났으며 무격막 전해셀에 공급된 최적 전류는 약 0.6 A로 나타났다. 산출된 최적 무격막 전해셀 조건에서 이산화염소수 발생을 위한 $IrO_2$-coated Ti, $RuO_2$-coated Ti 그리고 DSA 양전극 시스템의 전류효율(current efficiency; C.E.%)과 에너지 소모율(energy consumption; E.C. $W{\cdot}hr/g-ClO_2$)은 각각 약 79.80, 114.70, 70.99% 그리고 1.38, 1.03, $1.61W{\cdot}hr/g-ClO_2$로 나타났다.

Keywords

References

  1. Kim, B. G. and Kim, J. H., "A Study on Non-powered Flow Combined Chlorine Addition Units for Control of Chlorine Residual," J. of KSWST, 15(3), 81-88(2007).
  2. Jo, W. K., Kwon, K. D., Dong, J. I. and Chung, Y., "Comparison of Household Trihalomethanes(THMs) Exposure Associated with Use of Municipal Tap Water Treated with Chlorine or Ozone-Chlorine," J. Environ. Sci., 13(7), 627-635(2004).
  3. Kim, B. H., Ahn, K. C. and Kim, D. J., "A Study on Enhancement of UV Disinfection System Performance by the Vortex Generator," Journal of the KOSOS, 22(1), 24-29(2007).
  4. Park, K. J., Jeong, J. W., Lim, J. H., Jang, J. H. and Park, H. J., "Effect of an Aqueous Chlorine Dioxide Generator and Effect on Disinfection of Fresh Fruits and Vegetables by Immersion Washing," Korean J. Food Preserv., 15(2), 236-242(2008).
  5. Kim, Y. J., Im, Y. S., Sin, P. S. and Hyun, K. S., "A Study on the Production and Control of DBPs in Drinking Water Treatment," J. of KTSWT, 12(1), 75-82(2004).
  6. Hyun, K. S. and Kim, Y. J., "Characteristics of Intermediate THM and Bromic Reaction by Chlorination," J. of KTSWT, 14(1), 97-104(2006).
  7. Lee, B. C., Lee, S. H. and Lee, C. H., "Characteristics of Color Removal and Distribution Containing Textile Wastewater in Sewage by Ozonation," J. of KSEE, 29(10), 1085-1092(2007).
  8. Kwon, T. O., Park, B. B., Moon, J. S. and Moon, I. S., "Destruction of Acetic Acid Using Various Combinations of Oxidants by an Advanced Oxidation Processes," J. Korean Ind. Eng. Chem., 18(4), 314-319(2007).
  9. Bergmann, H. and Koparal, S., "The Formation of Chlorine Dioxide in the Electrochemical Treatment of Drinking Water for Disinfection," Electrochim. Acta, 50(25-26), 5128-5228(2005).
  10. Jin, Y. Y., Kim, Y. J., Chung, K. S., Won, M. S. and Song, K. B., "Effect of Aqueous Chlorine Dioxide Treatment on the Microbial Growth and Qualities of Strawberries During Storage," Food Sci. Biotechnol., 16(6), 1018-1022(2007).
  11. Lee, Y. J., "Impact of Water Quality Parameters on the Disinfection of Total Coliform with Chlorine Dioxide," Kor. J. Env. Hlth., 32(3), 215-221(2006).
  12. Deshwal, B. R. and Lee, H. K., "Manufacture of Chlorine Dioxide from Sodium Chlorite: Process Chemistry," J. Ind. Eng. Chem., 11(1), 125-136(2005).
  13. Volk, C. J., Hofmann, R., Chauret, C., Gagnon, G. A., Ranger, G. and Andrews, R. C., "Implementation of Chlorine Dioxide Disinfection: Effects of the Treatment Change on Drinking Water Quality in a Full-scale Distribution System," J. Environ. Eng. Sci., 1, 323-330(2002). https://doi.org/10.1139/s02-026
  14. Bergmnn, M. E. H. and Rollin, J., "Product and By-product Formation in Laboratory Studies on Disinfection Electrolysis of Water Using Boron-doped Diamond Anodes," Catal. Today, 124(3-4), 198-203(2007). https://doi.org/10.1016/j.cattod.2007.03.038
  15. Pillai, K. C., Kwon, T. O., Park, B. B. and Moon, I. S., "Studies on Process Parameters for Chlorine Dioxide Productioon Using $IrO_2$ anode in an Un-divided Electrochemical Cell," J. Hazard. Mater., 164(2-3), 812-819(2009). https://doi.org/10.1016/j.jhazmat.2008.08.090
  16. Kwon, T. O., Park, B. B., Roh, H. C. and Moon, I. S., "Preparation of Chlorine Dioxide Aqueous Solution by Un-divided Electrochemical Cell using $RuO_2$ Anode," J. Korean Ind. Eng. Chem., 20(3), 296-300(2009).
  17. Selcuk, H. and Anderson, M. A., "Effect of pH, Charge Separation and Oxygen Concentration in Photoelectrocatalytic System: Active chlorine Production and Chlorate Formation," Desalination, 176(1-3), 219-227(2005). https://doi.org/10.1016/j.desal.2004.10.016
  18. Stanbury, D. M. and Figlar, J. N., "Vanishingly Slow Kinetics of the $ClO_2/Cl^-$ Reaction," Coord. Chem. Rev., 187(1), 223-232(1999). https://doi.org/10.1016/S0010-8545(99)00092-2
  19. Scialdone, O., Randazzo, O., Galia, A. and Silvestri, G., "Electrochemical Oxidation of Organics in Water: Role of Operative Parameters in the Absence and in the Presence of NaCl," Water Res., 43(8), 2260-2272(2009). https://doi.org/10.1016/j.watres.2009.02.014