• Title/Summary/Keyword: $R_s$(Sheet Resistance)

Search Result 42, Processing Time 0.022 seconds

Effects of Plasma Treatment on Contact Resistance and Sheet Resistance of Graphene FET

  • Ra, Chang-Ho;Choi, Min Sup;Lee, Daeyeong;Yoo, Won Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.152-158
    • /
    • 2016
  • We investigated the effect of capacitively coupled Ar plasma treatment on contact resistance ($R_c$) and channel sheet resistance ($R_{sh}$) of graphene field effect transistors (FETs), by varying their channel length in the wide range from 200 nm to $50{\mu}m$ which formed the transfer length method (TLM) patterns. When the Ar plasma treatment was performed on the long channel ($10{\sim}50{\mu}m$) graphene FETs for 20 s, $R_c$ decreased from 2.4 to $1.15k{\Omega}{\cdot}{\mu}m$. It is understood that this improvement in $R_c$ is attributed to the formation of $sp^3$ bonds and dangling bonds by the plasma. However, when the channel length of the FETs decreased down to 200 nm, the drain current ($I_d$) decreased upon the plasma treatment because of the significant increase of channel $R_{sh}$ which was attributed to the atomic structural disorder induced by the plasma across the transfer length at the edge of the channel region. This study suggests a practical guideline to reduce $R_c$ using various plasma treatments for the $R_c$ sensitive graphene and other 2D material devices, where $R_c$ is traded off with $R_{sh}$.

A Study on Sb2O3 Beam Tuning and Monitoring in Antimony Implantation - (안티몬 이온주입시 Sb2O3 빔튜닝 방법 및 모니터링 연구)

  • 김상용;최민호;김남훈;정헌상;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.476-480
    • /
    • 2004
  • The characteristics of antimony implants are relatively well-known. Antimony has lower diffusion coefficient, shorter implantation range, and smaller scattering as compared with conventional dopants such as phosphorous and arsenic. It has been commonly used in the doping of buried layer in Bi-CMOS process. In this paper, characteristics and appropriate condition of monitoring in antimony implant beam tuning using Sb$_2$O$_3$were investigated to get a reliable process. TW(Thema Wave) and R$_{s}$(Sheet Resistance) test were carried out to set up condition of monitoring for stable operation through the periodic inspection of instruction condition. The monitoring was progressed at the point that the slant of R$_{s}$ varied significantly to Investigate the variation of instruction accurately.

Low Resistivity Ohmic Ni/Si/Ni Contacts to N-Type 4H-SiC (낮은 접촉저항을 갖는 Ni/Si/Ni n형 4H-SiC의 오옴성 접합)

  • Kim C. K.;Yang S. J.;Cho N. I.;Yoo H. J.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.495-499
    • /
    • 2004
  • Characteristics of ohmic Ni/Si/Ni contacts to n-type 4H-SiC are investigated systematically. The ohmic contacts were formed by annealing Ni/Si/Ni sputtered sequentially The annealings were performed at 950℃ using RTP in vacuum ambient and N₂ ambient, respectively. The specific contact resistivity(p/sub c/), sheet resistance(R/sub s/), contact resistance (R/sub c/) transfer length(L/sub T/) were calculated from resistance(R/sub T/) versus contact spacing(d) measurements obtained from TLM(transmission line method) structure. While the resulting measurement values of sample annealed at vacuum ambient were p/sub c/ = 3.8×10/sup -5/Ω㎠, R/sub c/ = 4.9 Ω and R/sub T/ = 9.8 Ω, those of sample annealed at N₂ ambient were p/sub c/ = 2.29×10/sup -4/Ω㎠, R/sub c/ = 12.9 Ω and R/sub T/ = 25.8 Ω. The physical properties of contacts were examined using XRD 3nd AES. The results showed that nickel silicide was formed on SiC and Ni was migrated into SiC. This result indicates that Ni/Si/Ni ohmic contact would be useful in high performance electronic devices.

The Effect of PEDOT:PSS Thickness on the Characteristics of Organic-Inorganic Hybrid Solar Cells (PEDOT:PSS의 두께가 유무기 하이브리드 태양전지 성능에 미치는 영향)

  • Kim, Souk Yoon;Han, Joo Won;Oh, Joon-Ho;Kim, Yong Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.61-64
    • /
    • 2019
  • In this study, we investigate organic-inorganic hybrid solar cells with a very simple three-layer structure (Al/n-Si/PEDOT:PSS). The performance of hybrid solar cells is optimized by controlling the sheet resistance and optical transmittance of the PEDOT:PSS layers. As the thickness of the PEDOT:PSS layer decreases, the optical absorption of the n-Si increases, which greatly improves the short-circuit current density ($J_{SC}$) of devices, but the increase in sheet resistance leads to a decrease in the open-circuit voltage ($V_{OC}$) and the fill factor (FF). The solar cell with the 180-nm thick PEDOT:PSS layer shows a highest efficiency of 8.45% ($V_{OC}$: 0.435 V, $J_{SC}$: $33.7mA/cm^2$, FF: 57.5%). Considering these results, it is expected that the optimizing process for the sheet resistance and transmittance of the PEDOT:PSS layer is essential for producing high-efficiency organic-inorganic hybrid solar cells and will serve as an important basis for achieving low-cost, high-efficiency solar cells.

Effect of Annealing Temperature after Deposition on the Structural, Electrical and Optical Properties of In2O3 Films (증착 후 열처리 온도에 따른 In2O3 박막의 구조적, 전기적, 광학적 특성 변화)

  • Lee, Y.J.;Lee, H.M.;Heo, S.B.;Kim, Y.S.;Chae, J.H.;Kong, Y.M.;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.307-310
    • /
    • 2011
  • We have investigated the structural, electrical and optical properties of $In_2O_3$ thin films deposited by RF magnetron sputtering and then annealed at $150^{\circ}C$ and $300^{\circ}C$ in vacuum. The structural and electrical properties are strongly related to annealing temperature. All the annealed $In_2O_3$ films are grown as a hexagonal wurtzite phase and the largest grain size is observed in the films annealed at $300^{\circ}C$. The sheet resistance decreases with a increase in annealing temperature and $In_2O_3$ film annealed at $300^{\circ}C$ shows the lowest sheet resistance of $174{\Omega}/{\Box}$. The optical transmittance of $In_2O_3$ films in a visible wavelength region also depends on the annealing temperature. The films annealed at $300^{\circ}C$ show higher transmittance of 76% than those of the films prepared in this study.

IZO/Ag/IZO Multilayers Prepared by Magnetron Sputtering for Flexible Transparent Film Heaters (마그네트론 스퍼터링 법을 이용한 IZO/Ag/IZO 다층 박막 투명 면상 발열체)

  • Park, So-Won;Gang, Dong-Ryeong;Kim, Na-Yeong;Hwang, Seong-Hun;Jeon, Seung-Hun;ZhaoPin, ZhaoPin;Kim, Tae-Hun;Kim, Seo-Han;Park, Cheol-U;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.114.2-114.2
    • /
    • 2017
  • Transparent film heaters (TFHs) based on Joule heating are currently an active research area. However, TFHs based on an indium tin oxide (ITO) monolayer have a number of problems. For example, heating is concentrated in part of the device. Also, heating efficiency is low because it has high sheet resistance ($R_S$). Resistance of indium zinc oxide (IZO) is similar to ITO and it can be used to flexible applications due to its amorphous structure. To solve these problems, our study introduced hybrid layers of IZO/Ag/IZO deposited by magnetron sputtering, and the electrical, optical, and thermal properties were estimated for various thickness of the metal interlayer. It was found that the sheet resistance of the multilayer was mainly dependent on the thickness of the Ag layers. The $R_S$ of IZO(40)/Ag/IZO(40nm) multilayer was 5.33, 3.29, $2.15{\Omega}/{\Box}$ for Ag thickness of 10, 15, and 20nm, respectively, while the $R_S$ of an IZO monolayer(95nm) was $59.58{\Omega}/{\Box}$. The optical transmittance at 550nm for the IZO(95nm) monolayer is 81.6%, and for the IZO(40)/Ag/IZO(40nm) multilayers with Ag thickness 10, 15 and 20nm, is for 72.8, 78.6, and 63.9%, respectively. The defrost test showed that the film with the lowest RS had the highest heat generation rate (HGR) for the same applied voltage. The results indicated that IZO(40)/Ag(15)/IZO(40nm) multilayer has the best suitable property, which is a promising thin film heater for the application in vehicle windshield.

  • PDF

Metallizations and Electrical Characterizations of Low Resistivity Electrodes(Al, Ta, Cr) in the Amorphous Silicon Thin Film Transistor (비정질 실리콘 박막 트랜지스터 소자 특성 향상을 위한 저 저항 금속 박막 전극의 형성 및 전기적 저항 특성 평가)

  • Kim, Hyung-Taek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.96-99
    • /
    • 1993
  • Electrical properties of the Thin Film Transistor(TFT) electrode metal films were investigated through the Test Elements Group(TEG) experiment. The main purpose of this investigation was to characterize the electrical resistance properties of patterned metal films with respect to the variations of film thickness and TEG metal line width. Aluminum(Al), Tantalum(Ta) and Chromium(Cr) that are currently used as TFT electrode films were selected as the probed metal films. To date, no work in the electrical characterizations of patterned electrodes of a-Si TFT was accomplished. Bulk resistance$(R_b)$, sheet resistance$(R_s)$, and resistivities($\rho$) of TEG patterned metal lines were obtained. Electrical continuity test of metal film lines was also performed in order to investigate the stability of metallization process. Almost uniform-linear variations of the electrical properties with respect to the metal line displacements was also observed.

  • PDF

Development and Properties of Rubber Sheet using Thermoplastic Elastomer (열가소성 고무를 사용한 RUBBER SHEET의 제조 및 물성)

  • Chun, Seung-Han;Han, Min-Hyeon;Mun, Il-Sik
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.122-127
    • /
    • 2003
  • Compounding, using such thermoplastic elastomer as styrene-ethylene-butadiene-styrene (SEBS) blended with polypropylene(PP), oil, and other ingredients, was studied to develop a new material with excellent impact resistance and resilience for the replacement of environmentally toxic PVC sheet. Hardness decreased linearly with oil content in the SEBS/oil blend, and the tensile strength increased with PP content whereas elongation showed no effects over 50 phr of PP in SEBS/oil/PP blend. In the practical SEBS composition, proposed to replace the PVC sheet material, tensile and tear strength, as well as hardness, increased proportionally with PP content, while melt index decreased.

Ni/Si/Ni Ohmic contacts to n-type 4H-SiC (Ni/Si/Ni n형 4H-SiC의 오옴성 접합)

  • Lee, J.H.;Yang, S.J.;Noh, I.H.;Kim, C.K.;Cho, N.I.;Jung, K.H.;Kim, E.D.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.197-200
    • /
    • 2001
  • In this letter, we report on the investigation of Ni/Si/Ni Ohmic contacts to n-type 4H-SiC. Ohmic contacts have been formed by a vacuum annealing and $N_2$ gas ambient annealing method at $950^{\circ}C$ for 10 min. The specific contact resistivity ( $\rho_{c}$ ), sheet resistance($R_s$), contact resistance($R_c$), transfer length($L_T$) were calculated from resistance($R_T$) versus contact spacing(d) measurements obtained from 10 TLM(transmission line method) structures. The resulting average values of vacuum annealing sample were $\rho_{c}=3.8{\times}10^{-5}\Omega cm^{3}$, $R_{c}=4.9{\Omega}$, $R_{T}=9.8{\Omega}$ and $L_{T}=15.5{\mu}m$, resulting average values of another sample were $\rho_{c}=2.29{\times}10^{-4}\Omega cm^{3}$, $R_{c}=12.9{\Omega}$ and $R_{T}=25.8{\Omega}$. The physical properties of contacts were examined using X-Ray Diffraction and Auger analysis, there was a uniform intermixing of the Si and Ni, migration of Ni into the SiC.

  • PDF

Ni/Si/Ni Ohmic contacts to n-type 4H-SiC (Ni/Si/Ni n형 4H-SiC의 오옴성 접합)

  • 이주헌;양성준;노일호;김창교;조남인;정경화;김은동;김남균
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.197-200
    • /
    • 2001
  • In this letter, we report on the investigation of Ni/Si/Ni Ohmic contacts to n-type 4H-SiC. Ohmic contacts have been formed by a vacuum annealing and N$_2$ gas ambient annealing method at 950$^{\circ}C$ for 10 min. The specific contact resistivity($\rho$$\sub$c/), sheet resistance(R$\sub$S/), contact resistance(R$\sub$S/), transfer length(LT) were calculated from resistance(R$\sub$T/) versus contact spacing(d) measurements obtained from 10 TLM(transmission line method) structures. The resulting average values of vacuum annealing sample were $\rho$$\sub$c/=3.8x10$\^$-5/ Ω$\textrm{cm}^2$ , R$\sub$c/=4.9Ω, R$\sub$T/=9.8Ω and L$\sub$T/=15.5$\mu\textrm{m}$, resulting average values of another sample were $\rho$$\sub$c/=2.29x10$\^$-4/ Ω$\textrm{cm}^2$ , R$\sub$c/=12.9Ω, R$\sub$T/=25.8Ω. The Physical properties of contacts were examined using X-Ray Diffraction and Auger analysis, there was a uniform intermixing of the Si and Ni, migration of Ni into the SiC.

  • PDF