• Title/Summary/Keyword: $Q{\times}f_o(GHz)$

Search Result 75, Processing Time 0.031 seconds

Low-temperature sintering and dielectric properties of the $1-xBiNbO_4-xZnNb_2O_6$ ceramics ($1-xBiNbO_4-xZnNb_2O_6$ 세라믹스의 저온소결 및 유전특성)

  • Kim, Yun-Han;Yoon, Sang-Ok;Kim, Kwan-Soo;Lee, Joo-Sik;Kim, Kyung-Mi;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.260-260
    • /
    • 2007
  • Low-temperature sintering and dielectric properties of the $1-xBiNbO_4-xZnNb_2O_6$ ceramics (x=0.3, 0.5, and 0.7) with 10 wt% zinc borosilicate (ZBS) glass was investigated as a function of the substitution of $ZnNb_2O_6$ with a view to applying this system to LTCC technology. The all composition addition of 10 wt% ZBS glass ensured a successful sintering below $900^{\circ}C$. The the amount of $ZnNb_2O_6$ on $ZnNb_2O_6$ ceramics increased the $Q{\times}f$ values, but it decreased the sinterability and dielectric constant due to the higher $Q{\times}f$ value and sintering temperature of $ZnNb_2O_6$ than that of $ZnNb_2O_6$ ceramics. The increase of $ZnNb_2O_6$ content from 0.3 to 0.7 in the $1-xBiNbO_4-xZnNb_2O_6$ ceramics with 10 wt% ZBS glass sintered at $900^{\circ}C$ demonstrated 30~20 in the dielectric constant (${\varepsilon}_r$), 3,500~4,500 GHz in the $Q{\times}f$ value.

  • PDF

Sintering and Microwave Dielectric Properties of Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] Dielectrics with V2O5 Addition (소결조제 V2O5 첨가에 따른 Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] 유전체의 소결 및 마이크로파 유전특성)

  • Lee, Young-Jong;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.289-294
    • /
    • 2010
  • For the aim of low-temperature co-fired ceramic microwave components, sintering behavior and microwave properties (dielectric constant ${\varepsilon}_r$, quality factor Q, and temperature coefficient of resonant frequency ${\tau}_f$) are investigated in $Bi_{18}O(Ca_{0.725}Zn_{0.275})_8Nb_{12}O_{65}$ [BCZN] ceramics with addition of $V_2O_5$. The specimens are prepared by conventional ceramic processing technique. As the main result, it is demonstrated that the additives ($V_2O_5$) show the effect of lowering of sintering temperature and improvement of microwave properties at the optimum additive content. The addition of 0.25 wt% $V_2O_5$ lowers the sintering temperature to $890^{\circ}C$ utilizing liquidphase sintering and show the microwave dielectric properties (dielectric constant ${\varepsilon}_r$ = 75, quality factor $Q{\times}f$ = 572 GHz, temperature coefficient of resonance frequency ${\tau}_f\;=\;-10\;ppm/^{\circ}C$). The estimated microwave dielectric properties with $V_2O_5$ addition (increase of ${\varepsilon}_r$, decrease of $Q{\times}f$, shift of ${\tau}_f$ to negative values) can be explained by the observed microstrucure (sintered density, abnormal grain structure) and possibly high-permittivity $Bi_{18}Zn_8Nb_{12}O_{65}$ (BZN) phase determined by X-ray diffraction.

Effect of Calcination Temperature and Sintering Additives on the Sintering Behaviors and Microwave Dielectric Properties of $(Zn_{0.8}Mg_{0.2})TiO_3$ (하소온도와 소결조제가 $(Zn_{0.8}Mg_{0.2})TiO_3$계의 소결거동과 마이크로파 유전특성에 미치는 영향)

  • Sim, Woo-Sung;Bang, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.282-286
    • /
    • 2003
  • We investigated the effects of calcination temperature and sintering additives on the sintering behaviors and microwave dielectric properties of $(Zn_{0.8}Mg_{0.2})TiO_3$. Highly densified samples were obtained at the sintering temperatures below $1000^{\circ}C$ with additions of 0.45 wt.% $Bi_2O_3$ and 0.55 wt.% $V_2O_5$. From the examination of the existing phases and microstructures before and after sintering of $(Zn_{0.8}Mg_{0.2})TiO_3$ system calcined at the various temperatures ranging from $800^{\circ}C$ to $1000^{\circ}C$, it was found that high $Q{\times}f_o$ values were obtained when unreacted or second phases in calcined body were reduced. When calcined at $1000^{\circ}C$ and sintered at $900^{\circ}C$, it consists of hexagonal as a main phase with uniform microstructure and exhibits $Q{\times}f_o$ value of 42,000 GHz and dielectric constant of 22.

  • PDF

Microwave Dielectric Properties of Sr-Substituted Ba(Mg0.5W0.5)O3 Ceramics

  • Yoon, Sang-Ok;Choi, Dong-Kyu;Oh, Jun-Hyuk;Kim, Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.364-367
    • /
    • 2018
  • The phase evolution, microstructure, and microwave dielectric properties of Sr-substituted $Ba(Mg_{0.5}W_{0.5})O_3$ ceramics, i.e., $(Ba_{1-x}Sr_x)(Mg_{0.5}W_{0.5})O_3$ ($0{\leq}x{\leq}0.30$), sintered at $1700^{\circ}C$ for 1 h were investigated. All compositions showed a 1 : 1 ordered perovskite structure. In all the compositions, $BaWO_4$ was detected as the secondary phase. With increasing x in ($Ba_{1-x}Sr_x$) $(Mg_{0.5}W_{0.5})O_3$, the lattice parameter increased linearly, indicating that a substitutional solid solution occurred. All compositions exhibited a dense microstructure. The value of ${\varepsilon}_r$ increased slightly with increasing x. The value of $Q{\times}f_0$ increased with the increase in x up to x = 0.10 and reached a saturated value of about 100,000 GHz. The composition for x = 0.20, i.e., $(Ba_{0.80}Sr_{0.20})(Mg_{0.5}W_{0.5})O_3$, sintered at $1700^{\circ}C$ for 1 h exhibited superior microwave dielectric properties of ${\varepsilon}_r=19.6$, $Q{\times}f_0=99,358GHz$, and ${\tau}_f=0.0ppm/^{\circ}C$, respectively.

Analysis of Glass Composition on Low k Materials (저유전율 소재에서의 유리조성에 대한 분석)

  • Na, Yoon-Soo;Hwang, Jong-Hee;Lim, Tae-Young;Shin, Hyo-Soon;Kim, Jong-Hee;Cho, Yong-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.177-177
    • /
    • 2008
  • The effect of several $SiO_2-B_2O_3-Al_2O_3$-R(R;Ca, Sr, Ba) borosilicate glass system on sintering behavior, dielectric properties and mechanical properties of glass/ceramic composites were investigated. The amount of '+2 valency' metal elements(Ca, Sr, Ba) were examined in LTCC composite of low k glass with cordierite filler. It was sintered for 60minutes in temperature range from 850C to 950. Properties of frit and glass/ceramic composites were analyzed by DTA, XRD, SEM, Network Analyzer, UTM and so on. Dielectric constant ($\varepsilon_r$) and $Q{\times}f_0$ (Q) of the composite with 50% glass contents demonstrated $\varepsilon_r$ = 5.4 $Q{\times}f_0$ = 1600 GHz. Sintering was complete and maximum bending strength of 160MPa was obtained.

  • PDF

Sintering and Dielectric Properties of $BaO-Nd_2O_3-TiO_2$ Microwave Ceramics for LTCC RE module (LTCC RF 모듈용 $BaO-Nd_2O_3-TiO_2$계 세라믹스의 저온소결 및 마이크로파 유전특성)

  • Shin, Dong-Soon;Choi, Young-Jin;Park, Jae-Hwan;Nahm, Sahn;Park, Jae-Gwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • The effects of glass addition on the low-temperature sintering and microwave dielectric properties of $BaO-Nd_2O_3-TiO_2$ dielectric ceramics were studied. When 10∼13 wt% of lithium borosilicate glass was added, the sintering temperature decreased from 130$0^{\circ}C$to 850-$900^{\circ}C$relative density of more than 97% was obtained. When the sample was sintered at $850^{\circ}C$ with 10 wt% of glass, the dielectric properties of $\epsilon_r{\ge}54$, $Q{\times}f_0{\ge}2300$, and $\tau_f{\ge}+8ppm/^{\circ}C$ were obtained.

  • PDF

Microwave Dielectric Properties of CaTi0.5Fe0.25Nb0.25O3 Ceramics with CuO Addition

  • Kang, Kui-Won;Kim, Hyo-Tae;Hwang, Joon-Cheol;Nam, Joong-Hee;Yeo, Dong-Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.633-636
    • /
    • 2004
  • The sintering behavior, microstructure and microwave dielectric properties of Ca $Ti_{0.5}$F $e_{0.25}$N $b_{0.25}$ $O_3$ with CuO have been investigated. Among the range of additions, 3 wt% CuO was observed to perform most satisfactory for acting as a sintering aid. The dielectric properties were found to strongly depend on the sintered densities. The dielectric constant increased with sintering temperatures, while the Q${\times}$ $f_{0}$ value affected by second phase. For Ca $Ti_{0.5}$F $e_{0.25}$N $b_{0.25}$ $O_3$ with 3 wt% CuO sintered at 100$0^{\circ}C$ for 2 h, the dielectric properties with an $\varepsilon$$_{r}$ value of 56, a Q${\times}$ $f_{0}$ value of 3,500 GHz and a $\tau$$_{f}$ value of 10 ppm/$^{\circ}C$ were obtained and suggested for practical applications.cations.ons.ons.ons.

The Properties on Ceramic/glass Composites of SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 Borosilicate Glass System for Low Temperature Ceramics (저온 소결 세라믹스용 SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 붕규산염계 세라믹/유리 복합체의 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Shim, Sang-Heung;Park, Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • The effects of $B_2O_3-SiO_2-R(R;CaO,\;BaO,\;ZnO,\;Bi_2O_3)$ borosilicate glass system on the sintering behavior and microwave dielectric properties of ceramic/glass composites were investigated as functions of modifier, glass addition ($30{\sim}50\;vol%$) and sintering temperature ($500{\sim}900^{\circ}C$ for 2 hrs). The addition of 50 and 45 vol% glass ensured successful sintering below $900^{\circ}C$. Sintering characteristics of the composites were well described in terms of modifier. Borosilicate glass enhanced the reaction with $Al_{2}O_{3}$ to form pores, second phases and liquid phases, which was responsible to component of modifier. Dielectric constant (${\varepsilon}_{r},\;Q{\times}f_{o}$) and temperature coefficient of resonant frequency (${\tau}_{f}$) of the composite with 50 and 45 vol% glass contents($B_{2}O_{3}:SiO_{2}:R=25:10:65$) demonstrated A-CaBS(7.8, 2,560 GHz, -81ppm/$^{\circ}C$), A-BaBs(5.8, 3.130 GHz, -64 ppm/$^{\circ}C$), A-ZnBS(5.7, 17,800 GHz, -21 ppm/$^{\circ}C$), A-BiBs(45 vol% glass in total)(8.3, 2,700 GHz, -45 ppm/$^{\circ}C$) which is applicable to substrate requiring an low dielectric properties.

Microwave Dielectric Properties of xZnO+{1-x)$TiO_2$ Ceramic Systems (xZnO+(1-x)$TiO_2$계 세라믹의 마이크로파 유전특성)

  • Sim, Woo-Sung;Bang, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.605-608
    • /
    • 2002
  • In order to improve the microwave dielectric properties of ZnO+$TiO_2$ ceramic systems, we studied the relations among microstructures, phases, and microwave dielectric properties at various mole ratio and sintering temperatures. The optimum composition was found to be 0.2ZnO+0.8$TiO_2$ when sintered at $1100^{\circ}C$, at which we could obtain following results: $Q{\times}f_o$ = 22,500 GHz, ${\varepsilon}_r$ = 73, and $\tau_f=+210ppm/^{\circ}C$.

  • PDF

Microwave Dielectric Properties of Low-temperature Sintered $Mg_4Nb_2O_9$ Ceramics (저온소결 $Mg_4Nb_2O_9$ 세라믹스의 마이크로파 유전특성)

  • Lee, Ji-Hun;Bang, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.439-442
    • /
    • 2004
  • The effects of sintering additives on the low-temperature sintering and microwave dielectric properties of $Mg_4Nb_2O_9$ dielectric ceramics were studied. When $3{\sim}20wt%$ of $0.242Bi_2O_3-0.758V_2O_5$ was added, the sintering temperature decreased from $1100{\sim}1300^{\circ}C$ to $950^{\circ}C$ and high density was obtained. When $Mg_4Nb_2O_9$ was sintered at $950^{\circ}C$ with 10wt% of sintering additive, the microwave dielectric properties of $Q{\times}f_0\;=\;80.035GHz,\;\epsilon_r\;=\;13.3\;and\;\tau_f\;=\;-12.9\;ppm/^{\circ}C$ were obtained.

  • PDF