1-xBiNbO4-xZnNb2O6 세라믹스의 저온소결 및 유전 특성 김윤한, 윤상옥, 김관수, 이주식, 김경미, 박종국* 강릉대학교, 강원대학교* ## Low-temperature sintering and dielectric properties of the 1-xBiNbO₄-xZnNb₂O₆ ceramics Yun-Han Kim, Sang-Ok Yoon, Kwan-Soo Kim, Joo-Sik Lee, Kyung-Mi Kim and Jong-Guk Park Kangnung Univ., Kangwon Univ. ## Abstract Low-temperature sintering and dielectric properties of the 1-xBiNbO₄-xZnNb₂O₆ ceramics (x=0.3, 0.5, and 0.7) with 10 wt% zinc borosilicate (ZBS) glass was investigated as a function of the substitution of ZnNb₂O₆ with a view to applying this system to LTCC technology. The all composition addition of 10 wt% ZBS glass ensured a successful sintering below 900 °C. The the amount of ZnNb₂O₆ on BiNbO₄ ceramics increased the $Q \times f$ values, but it decreased the sinterability and dielectric constant due to the higher $Q \times f$ value and sintering temperature of ZnNb₂O₆ than that of BiNbO₄ ceramics. The increase of ZnNb₂O₆ content from 0.3 to 0.7 in the 1-xBiNbO₄-xZnNb₂O₆ ceramics with 10 wt% ZBS glass sintered at 900 °C demonstrated 30~20 in the dielectric constant (ϵ_1), 3,500~4,500 GHz in the $Q \times f$ value. Key Words: 1-xBiNbO₄-xZnNb₂O₆, Zinc borosilicate glass, LTCC, Dielectric property