• Title/Summary/Keyword: $Q^2$PSK

Search Result 25, Processing Time 0.028 seconds

CACB-Q2PSK Modulation for Efficient Bandwidth Utilization and Constant Amplitude Signal Transmission (효율적인 대역폭 이용과 정진폭 신호 전송을 위한 CACB-Q2PSK 변조)

  • Hong, Dae-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.93-99
    • /
    • 2008
  • In this paper, we propose new modulation schemes using the conventional CACB modulation with constant amplitude property. Also the proposed modulation schemes supports high transmission data rate by increasing the spectral efficiency. In order to obtain the high spectral efficiency, the $Q^2$PSK and CA-$Q^2$PSK are used. We explain the simplest combining modulation scheme of CACB and $Q^2$PSK (i.e., CACB-$Q^2$PSK). However, this modulation scheme cannot support the constant amplitude property. Hence the first CACB-CA-$Q^2$PSK (or CACB-CA-$Q^2$PSK I) modulation scheme is proposed for the constant amplitude property. In the modulation scheme, the redundant constant amplitude encoding (spectral efficiency decrease) is required. Therefore, the second CACB-CA-$Q^2$PSK (or CACB-CA-$Q^2$PSK II) modulation scheme is proposed retaining the constant amplitude and the spectral efficiency. Computer simulations show that the proposed CACB-CA-$Q^2$PSK II is the efficient modulation scheme.

A Study on the Gaussian-filtered $Q^2PSK$ System for the Digital Mobile Communication System (디지탈 이동통신 시스템을 위한 가우시안 여파 $Q^2PSK$ 방식에 관한 연구)

  • Kim, Kee-Keun;Heo, Dong-Kyu;Kim, Ju-Koang;Ryu, Heung-Gyoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.19-26
    • /
    • 1991
  • $GQ^2PSK$ which is a novel digital mobile communication modulation scheme has been introduced and described. $GQ^2PSK$ is a modulation scheme that bandlimits NRZ digital data with Gaussian filter and modulates it by $Q^2PSK$ scheme which uses two shaping pulses and two carriers which are pairwise quadrature. Thus transmission bit rate can be enhanced and available signal space dimensions are more efficiently utilized, with comparison to the already-existing GMSK, QPSK and OQPSK modulation methods. Via the computer simulation, bit error rate of $GQ^2PSK$ scheme which is bandlimited by gaussian filter to be suitable for digital mobil communication, is lower than that of $Q^2PSK$ by 1.4[dB] in case that the signal-to-noise ration is 0[dB], but we have confirmed that $GQ^2PSK$ modulation scheme is approximately equivalent to the GMSK in the respect of power efficiency, and transmission efficiency of $GQ^2PSK$ is improved to 1.5 times than that of GMSK.

  • PDF

Generalized BER Performance Analysis for Uniform M-PSK with I/Q Phase Unbalance (I/Q 위상 불균형을 고려한 Uniform M-PSK의 일반화된 BER 성능 분석)

  • Lee Jae-Yoon;Yoon Dong-Weon;Hyun Kwang-Min;Park Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3C
    • /
    • pp.237-244
    • /
    • 2006
  • I/Q phase unbalance caused by non-ideal circuit components is inevitable physical phenomenons and leads to performance degradation when we implement a practical coherent M-ary phase shift keying(M-PSK) demodulator. In this paper, we present an exact and general expression involving two-dimensional Gaussian Q-functions for the bit error rate(BER) of uniform M-PSK with I/Q phase unbalance over an additive white Gaussian noise(AWGN) channel. First we derive a BER expression for the k-th bit of 8, 16-PSK signal constellations when Gray code bit mapping is employed. Then, from the derived k-th bit BER expression, we present the exact and general average BER expression for M-PSK with I/Q phase unbalance. This result can readily be applied to numerical evaluation for various cases of practical interest in an I/Q unbalanced M-PSK system, because the one- and two-dimensional Gaussian Q-functions can be easily and directly computed using commonly available mathematical software tools.

OQ2PSK Modulation with Overlapped Raised-Cosine Pulse Shaping (중첩 상승여현 펄스 정형 OQ2PSK 변조)

  • Jeon, Sang Yeop;Chung, Jae-Kyung;Kim, Myoung Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.7-16
    • /
    • 2015
  • The transmitter of quadrature multiplexed GMSK (QM-GMSK) is composed of two quadrature multiplexed GMSK modulators. QM-GMSK has a slightly increased spectrum main lobe compared with $Q^2PSK$ or QMSK, but it has highly suppressed side lobes. As a result, practical spectrum efficiency of QM-GMSK is achieved. By replacing the baseband elementary pulses of QM-GMSK with their approximate, the squared sinusoid of half-period, offset-$Q^2PSK$($OQ^2PSK$) is obtained. The $OQ^2PSK$ signal has similar spectral properties to QM-GMSK. The transmitter of $OQ^2PSK$ can be simply implemented without the Gaussian lowpass filter, which is required in QM-GMSK transmitter. In this paper, we propose an overlapped pulse shaping in $OQ^2PSK$ with RC(raised-cosine) or SRC(squared raised-cosine) pulses of length longer than the symbol period. Power spectrum of the proposed modulation scheme exhibits further suppressed side lobes, hence enhanced spectrum efficiency is obtained. Simulation results indicate that BER performance of the proposed scheme is comparable to that of $OQ^2PSK$.

A Study on the Adaptive Equalizer for Performance Enhancement in $Q^2PSK$ Modulation System ($Q^2PSK$ 변조 시스템에서 수신 성능 향상을 위한 적응 등화기에 관한 연구)

  • Keum, Hong-Sik;Kim, Yong-Ro;Ryu, Heung-Gyoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • In this paper, we Investigate the $Q^2PSK$ modulation and demodulation system and analyze the BER performance of the receiver system under 2-way Rayleigh fading and Gaussian noisy channel environment. The TDL equalizer with the adaptive LMS algorithm is used to improve the receiver performance since the received signal is distorted through that channel and the recovered carrier from the noncoherent demodulation has much phase deviation error. From the results of computer simulation, It is shown that at 12dB SNR, the reception performance is improved by $83.7\%$ in the fading case, $89.3\%$ in the carrier phase error case and $60.4\%$ in the case of the fading and carrier phase error.

  • PDF

A study on the biorthogonally coded Q$^{2}$AM with constant envelope property (정진폭특성을 갖는 Birothogonal 부호로 부호화된 Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation)에 관한 연구)

  • 박인재;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2470-2480
    • /
    • 1996
  • The energy efficiency and bandwidth efficiency are two important criterion in designing a modulation scheme Especially the constant envelope property must be considered as in the non-linear channel tht exit, for example in the nonlinear amplifiers for satellite repeater. The Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation) is a new modulation scheme which combines the Q$^{2}$PSK(Quadrature Quadrature Phase Shift Keying) scheme which increases the signal space dimension and the QAM scheme which increases the bandwidth efficiency using the multi-level signal. The Q$^{2}$AM scheme has by far superior spectrum efficiency compared with the existing modulation schemes. Applying this scheme in the non-linear communication system increses the bandwidth efficiency but cannot envelop property. In this paper, a new system architecture is suggested which satisfies the large spectrum efficiency and constant envelope property by implementing the linear block coding prior to the Q$^{2}$AM modulation. the system has improved in performance by gaining the constant envelope and the additional coding gain. We able to observe the performance improvement of the suggested system(at BER=10$^{-5}$ ) of 4.4 dB for the 16-QAM and 0.7 dB for the Q$^{2}$PSK under the exact spectrum efficiency.

  • PDF

Multi-code Biorthogonal Code Keying with Constant Amplitude Coding Combined with $Q^{2}PSK$ to Increase Bandwidth Efficiency (정 진폭 부호화된 Multi-code Biorthogonal Code Keying시스템에서 대역폭 효율 개선을 위해 $Q^{2}PSK$를 이용하는 방안)

  • Kim Sung-Pil;Kim Myoung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.484-492
    • /
    • 2006
  • A multi-code biorthogonal code keying(MBCK) system consists of multiple waveform coding block, and the sum of output codewords is transmitted. Drawback of MBCK is that it requires amplifier with high linearity because its output symbol is multi-level. MBCK with constant amplitude preceding blcok(CA-MBCK) has been proposed, which guarantees sum of orthogonal codes to have constant amplitude. Redundant bits of CA-MBCK for constant amplitude coding are not only used to make constant amplitude signal but also used to improve the bit error rate(BER) performance at receiver. In this paper, we proposed a transmission scheme which combine CA-MBCK with $Q^{2}PSK$ to improve bandwidth efficiency of CA-MBCK. The BER performance of the scheme is same that of CA-MBCK in additive white gaussian noise(AWGN). And we showed that BER performance of the proposed system can be improved using redundant bits of constant amplitude preceding.

Multi-code Biorthogonal Code Keying with Constant Amplitude Coding using Interleaving and $Q^2PSK$ for maintaining a Constant Amplitude feature and increasing Bandwidth Efficiency (정 진폭 부호화된 Multi-code Biorthogonal Code Keying 시스템에서 인터리빙과 $Q^2PSK$를 이용하여 정 진폭 특성을 유지하면서 대역폭 효율을 개선시키는 방안)

  • Kim, Sung-Pil;Kim, Myoung-Jin
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.427-430
    • /
    • 2005
  • A multi-code biorthogonal code keying (MBCK) system consists of multiple waveform coding blocks, and the sum of output codewords is transmitted. Drawback of MBCK is that it requires amplifier with high linearity because its output symbol is multi-level. MBCK with constant amplitude precoding block (CA-MBCK) has been proposed, which guarantees sum of orthogonal codes to have constant amplitude. The precoding block in CA-MBCK is a redundant waveform coder whose input bits are generated by processing the information bits. Redundant bits of constant amplitude coded CA-MBCK are not only used to make constant amplitude signal but also used to improve the BER performance at the receiver. In this paper, we proposed a transmission scheme which combines CA-MBCK with $Q^2PSK$ modulation to improve bandwidth efficiency of CA-MBCK and also uses chip interleaving to maintain a constant amplitude feature of CA-MBCK. bandwidth efficiency of a proposed transmission scheme is increased fourfold. And the BER performance of the scheme is same as that of CA-MBCK.

  • PDF