• Title/Summary/Keyword: $Pt_3Ni$

Search Result 166, Processing Time 0.033 seconds

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

Dynamics Study with DFT(Density Functional Theory) Calculation for Metal with a few Peripheral Electrons (범밀도함수론을 이용한 백금, 팔라듐, 니켈, 크롬과 수소반응성 연구)

  • Kim, Taewan;Park, Taesung;Jung, Yeonsung;Kang, Youngjin;Lee, Taeckhong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.234-239
    • /
    • 2014
  • To study catalytic activity and hydrogen embrittlement of Pd, Pt, Ni, and Cr in fuel cell electrode, we used density-functional theory. The calculation tools based electron density give much shorter calculation time and cheap costs. Maximum of bond overlap populations of each metal are 0.6539eV for Pd-H, 0.6711eV for Pt-H, 0.6323eV for Ni-H, 0.6152eV for Cr-H. Electron density of Cr has strongest in related metals, which shows strong localization of electron, implying anti hydrogen embrittlement behaviors.

NiO(Co0.25Mn0.75)2O3 and BaSrTiO3 thick films on alumina substrate as temperature and humidity ceramic multisensors

  • Oh, Young-Jei;Lee, Deuk-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • $NiO{\cdot}(Co_{0.25}Mn_{0.75})_2O_3$(Mn-Ni-Co) and $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thick films were screen printed on Pt patterned alumina substrate to investigate the effects of sintering temperature on humidity and temperature sensing properties of ceramic sensors. A raise in sintering temperature increased resistance and B constant of the Mn-Ni-Co temperature sensor. This may have derived from the synergic effects of the reduction in charge carriers caused by the substitution of Co for Mn as well as the formation of microcracks from the difference in thermal expansion coefficients. Dependence of resistance on humidity of the Mn-Ni-Co temperature sensor, however, was not found. BST films sintered at temperatures in the range of $1100^{\circ}C$ to $1150^{\circ}C$ showed excellent humidity sensing properties. The BST humidity sensor was faster in its response than the Mn-Ni-Co temperature sensor. The humidity sensor, however, proved to be unstable under various temperatures, suggesting a need for a temperature stabilizing device. In contrast, the Mn-Ni-Co temperature sensor was stable under humid conditions.

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode (ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구)

  • Oh, In-Don;Kim, Samantha;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.164-171
    • /
    • 2014
  • A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.

Effect of flux on low temperature sintering for PNN-PT-PZ piezoelectric ceramics (PNN-PT-PZ계 압전세라믹스의 저온소결에 미치는 flux의 영향)

  • 이기태;남효덕
    • Electrical & Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.537-544
    • /
    • 1993
  • 기본조성이 0.5[Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_{3}$]-0.5[0.65PbTiO$_{3}$ -0.35PbZrO$_{3}$] (PNN-PT-PZ)인 압전세라믹스를 NaCl-KCI를 사용한 flux의 양 및 소결온도에 따른 생성반응과 소결특성, 유전 및 압전특성을 조사하였다. 이때 1몰의 산화물에 대한 flux의 양은 0.1, 2 및 5mole로 하였으며 소결온도는 1000-1200.deg.C로 하였다. 본 연구의 flux법은 고상반응법에 비해 낮은 하소온도에서 pyrochlore상을 현저히 줄일수 있었으며 고상반응법보다 낮은 온도에서 치밀화가 이루어질뿐 아니라 유전 및 압전특성을 개선할 수 있었으며 소결온도도 낮출 수 있었다. Flux의 양이 증가할수록 결정의 입성장이 빨랐으며 유전 및 압전특성이 가장 좋은 flux의 첨가량의 조건은 1mole이었다.

  • PDF

Dielectric and Piezoelectric Properties of MnO2-doped PSN-PNN-PT Ceramics (MnO2가 첨가된 PSN-PNN-PT 세라믹스의 유전 및 압전특성)

  • Lee, Jong-Deok
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.152-156
    • /
    • 2004
  • The dielectric and piezoelectric properties of 0.36Pb($Sc_{1/2}Nb_{1/2}$)$O_{3}$-0.25Pb($Ni_{1/3}Nb_{2/3}$)$O_{3}$-0.39Pb$TiO_{3}$ (hereafter PSNNT) at the morphotropic phase boundary (MPB) composition were investigated with $0{\sim}2.5$ mot% $MnO_{2}$ doping. Bulk density, dielectric loss and tetragonality of crystal structure were all improved with increasing $MnO_{2}$ additive content. With increasing $MnO_{2}$ additive content, the electromechanical coupling factor and quality factor were also increased: Electromechanical coupling $k_{p}$ and quality factor $Q_{m}$ at 2.0 mol% $MnO_{2}$ doping with were showed highest values of 55.6 % and 252, respectively.

Micro-Macro Domain Switching and Thermoelastic Martensitic Transformation in $PbZrO_3$-doped $Pb(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3$ System ($PbZrO_3$가 첨가된 $Pb(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3$ 계의 미소-거시 분역 반전과 열탄성 마르텐사이트 변태)

  • 윤만순;장현명
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.967-976
    • /
    • 1995
  • The possiblity of the existence of a spontaneous relaxor-normal ferroelectric transition was proposed and examined using 1~5 mol% PbZrO3-doped Pb(Ni1/3Nb2/3)O3-PbTiO3 (PNN-PT) systems having tetragonal symmetry at rom temperature. On cooling, the system with 60mol% Pb(Ni1/3Nb2/3)O3 underwent a spontaneous transition from a relaxor to a normal ferroelectric state. A microscopic examination demonstrates that the relaxornormal ferroelectric transition corresponds to a micro-macro domain switching accompanied with thermoelastic martensitic transformation. The long-range macrodomains below the transition temperature were characterized by twinlike 90$^{\circ}$macrodomains with tetragonal symmetry. The relaxor-normal ferroelectric transition was further correlated with the rhombohedral-tetragonal first-order structural transition.

  • PDF

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich;Ratnarathorn, Nalin;Themsirimongkon, Suwaphid;Dungchai, Wijitar
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.416-423
    • /
    • 2019
  • A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.

Fabrication of Solid Electrolyte Oxygen Sensors Using $CaF_{2}$ and their Characteristics ($CaF_{2}$를 이용한 고체전해질 산소센서의 제조및 그 특성)

  • Lee, Jae-Hyun;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.40-49
    • /
    • 1994
  • Potentiometric cell oxygen sensors using $CaF_{2}$ were fabricated for monitering the oxygen partial pressure in the low temperature range ($300^{\circ}C{\sim}$500^{\circ}C). The disk type oxygen sensors consist of a reference electrode: Air($O_{2}:21%$)|Pt, a solid electrolyte $CaF_{2}$, and a sensing metel Pt electrode. And the change in open circuit emf of the disk type cell was about 45mV for the oxygen concentration range, $0.1%{\sim}10%$, at the cell temperature of $400^{\circ}C$. Also, the reference electrode incorporated type sensor showed the change of 40mV for 0.1% to 10% oxygen partial pressure range.

  • PDF

The piezoelectric and dielectric properties of $MnO_2$ doped $0.36Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.25Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.39PbTiO_3$ ceramics ($MnO_2$가 첨가된 0.36PSN-0.25PNN-0.39PT세라믹스의 유전 및 압전특성)

  • Jang, Jeong-Wan;Lee, Jong-Deok;Park, Sang-Man;Lee, Sung-Gap;Park, Gi-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1809-1811
    • /
    • 2000
  • High power piezoelectric materials are presently being extensively developed for applications such as ultrasonic motors and piezoelectric transformer In this study, the piezoelectric and dielectric properties of $MnO_2$ doped $0.36Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.25Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.39PbTiO_3$ (hereafter PSNNT), which is the morphotropic phase boundary composition of the PSN-PNN-PT system were investigated. $MnO_2$-addition into the $0.36Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.25Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.39PbTiO_3$ composition increases the piezoelectric coefficient up to $k_{p}{\fallingdotseq}$55.6[%] and $Q_{m}{\fallingdotseq}$252. Moreover, $MnO_2$ addition makes tetragonal phase more stable with respect to rhombohedral phase.

  • PDF