DOI QR코드

DOI QR Code

Dynamics Study with DFT(Density Functional Theory) Calculation for Metal with a few Peripheral Electrons

범밀도함수론을 이용한 백금, 팔라듐, 니켈, 크롬과 수소반응성 연구

  • Received : 2014.05.26
  • Accepted : 2014.06.30
  • Published : 2014.06.30

Abstract

To study catalytic activity and hydrogen embrittlement of Pd, Pt, Ni, and Cr in fuel cell electrode, we used density-functional theory. The calculation tools based electron density give much shorter calculation time and cheap costs. Maximum of bond overlap populations of each metal are 0.6539eV for Pd-H, 0.6711eV for Pt-H, 0.6323eV for Ni-H, 0.6152eV for Cr-H. Electron density of Cr has strongest in related metals, which shows strong localization of electron, implying anti hydrogen embrittlement behaviors.

Keywords

References

  1. Vismadeb Mazumder and Shouheng Sun "Oleylamine- Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation" J. Am. Chem. Soc., 2009, 131 (13), pp. 4588-4589. https://doi.org/10.1021/ja9004915
  2. R. Wenyu Huang, Huolin L. Xin, Peidong Yang. "Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces" Science 21 March 2014 Vol. 343 no. 6177 pp. 1339-1343. https://doi.org/10.1126/science.1249061
  3. J. S. Han and Digby. D. Macdonald. "theoretical Modeling of the Kinetics of External Hydrogen Embrittlement" Korean Hydrogen and New Energy Society(2005. 12), Vol. 16, No. 04, pp. 324-333.
  4. J. O. Ham, B. K. Kim, and S. H. Lee. "Measurement Method of Sensitivity for Hydrogen Embrittlement of High Strength Bolts" Kor. J. Met. Mater.(2011) Vol. 49, No. 1, pp. 1-8. https://doi.org/10.3365/KJMM.2011.49.1.001
  5. Y. S. Kim. and D. Y. Lee "Quantum Material Design using the DV-X$\alpha$ molecular Orbital Method" Korean J. Crystallography.(2005) Vol. 16, No. 1, pp. 30-37.
  6. B.Park and R. S. Lakes. "Biomaterials Introduction." Plenum. New York. 1992.
  7. R. A. Young. "Biological Apatite vs. Hydroxyapatite at the Atomic Level." Clinical Orthopedics. 113 249-60 (1975). https://doi.org/10.1097/00003086-197511000-00036
  8. J. C. Elliott, P. E. Mackie, and R. A. Young, Science. 180 1055-57 (1973). https://doi.org/10.1126/science.180.4090.1055
  9. M. I. Kay, R. A. Young, and A. S. Posner. "Crystal Structre of Hydroxyapatite." Nature. 204 1050-52 (1964). https://doi.org/10.1038/2041050a0
  10. N. H. de leeuw. "Local Ordering of Hydroxy Groups in Hydoxyapatite." Chem. Comm. 204 1646-47 (2001).
  11. D. E. Ellis, Understanding Chemical Reactivity, Vol. 12 Density Functional Theory of Molecules, Clusters, and Solids, Kluwer Academic Publishers. BOSTON. 1995.
  12. P. Hohenberg and W, Kohn, Phys, Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
  13. W. Kohn and L. J. Sham, Phys. Rev. 140, A113 (1965).
  14. R. O. Jones and O. Gunnarson, Rev. Mod. Phy. 61, 689 (1989). https://doi.org/10.1103/RevModPhys.61.689
  15. C. Herring, Phys. Rev. B57, 1167 (1940).
  16. J. C. Phillips and L. K. Kleinman, Phys. Rev. B116, 287 (1959). https://doi.org/10.1103/PhysRev.116.287
  17. M. L. Cohen, Phy. Rep. 110, 293 (1984). https://doi.org/10.1016/0370-1573(84)90192-3
  18. D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979). https://doi.org/10.1103/PhysRevLett.43.1494
  19. G. P Kerker, J. Phys. C 13 L189 (1980). https://doi.org/10.1088/0022-3719/13/9/004
  20. G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B26, 4199 (1982). https://doi.org/10.1103/PhysRevB.26.4199
  21. N. Troullier and J. L. Martins Phys. Rev. B43, 1993 (1991). https://doi.org/10.1103/PhysRevB.43.1993
  22. D. Vanderbilt, Phys. Rev B 41, 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892
  23. J Ihm, Alex Zunger, and M. L. Cohen, 1979, J. Phys. C 12, 4409. https://doi.org/10.1088/0022-3719/12/21/009