• Title/Summary/Keyword: $Poly-{\beta}-hydroxybutyrate$

Search Result 41, Processing Time 0.026 seconds

Periodic Change in DO Concentration for Efficient Poly-${\beta}$-hydroxy-butyrate Production Using Temperature-inducible Recombinant Escherichia coli with Proteome Analysis

  • Abdul Rahman, Nor Aini;Shirai, Yoshihito;Shimizu, Kazuyuki;Hassan, Mohd Ali
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.281-288
    • /
    • 2002
  • Recombinant Escherichia coli strain harboring the ${\lambda}$pR-pL promotor and heterologus poly-${\beta}$-hydroxybutyrate (PHB) biosynthesis genes was used to investigate the effect of culture conditions on the efficient PHB production. The expression of phb genes was induced by a temperature upshift from $33^{\circ}C\;to\;38^{\circ}C$. The protein expression levels were measured by using two-dimensional electrophoresis, and the enzyme activities were also measured to understand the effect of culture temperature, carbon sources, and the dissolved oxygen (DO) concentration on the metabolic regulations. AcetylCoA is an important branch point for PHB production. The decrease in DO concentration lowers the citrate synthase activity, thus limit the flux toward the TCA cycle, and increase the flux for PHB production. Since NADPH is required for PHB production, the PHB production does not continue leading the overproduction of acetate and lac-tate. Based on these observations, a new operation was considered where DO concentration was changed periodically, and it was verified its usefulness for the efficient PHB production by experiments.

A Simulation Study of Two-stage Fed-batch Culture for Optimization and Control of PHB Production (PHB 생산의 최적화 및 제어를 위한 이단유가식 배양의 전산모사)

  • 이재호;이용우;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.668-676
    • /
    • 1992
  • For the purpose of optimizing poly-l3-hydroxybutyrate (PHB) production from Alcaligenes eutrophus, two-stage fed-batch culture was adopted. In this system, specifk growth rate was maximized during the first stage whereas specific production rate was maximized during the second stage. The optimal concentrations of glucose and ammonium chloride were 16.6 and 0.54 g/I in the growth stage and 20.0 and 0.07 g/l in the production stage, respectively. Proportional feedback control considering time lag was suggested for PHB production process and a simulator was developed for real-time control purpose.

  • PDF

Real-Time PCR Analysis of Metabolic Pathway of PHB in Acidiphilium cryptum DX1-1

  • Xu, Ai-Ling;Xia, Jin-Lan;Liu, Ke-Ke;Li, Li;Yang, Yu;Nie, Zhen-Yuan;Qiu, Guan-Zhou
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • The time, yield, and related genes expression of PHB accumulation of Acidiphilium cryptum DX1-1 were investigated under four different initial C/N ratios, 1.2, 2.4, 7.5, and 24. The results of time and yield of poly-$\beta$-hydroxybutyrate (PHB) accumulation show that the initial C/N ratio of 2.4 was optimum for strain DX1-1 to accumulate PHB, but both higher and lower initial C/N ratios did not favor that process. Based on the genome of Acidiphilium cryptum JF-5, 13 PHB accumulation related genes in strain JF-5 were chosen and successfully cloned from strain DX1-1. The differential expressions of the 13 functional genes, in different C/N ratios as cited above, were then studied by real-time PCR. The results show that all the 13 genes were most upregulated when the initial C/N ratio was 2.4, and among which the gene Acry_3030 encoding poly-$\beta$-hydroxybutyrate polymerase and Aery_0626 encoding acetyl-CoA synthetase were much more upregulated than the other genes, which proved that they play the most important role for PHB accumulation, and acetate is the main initial substance for PHB accumulation for strain DX1-1. Potential regulatory motifs analysis showed that the genes related to PHB accumulation are regulated by different promoters and that the motif had weak similarity to the model promoters, suggesting that PHB metabolism in Acidiphilium cryptum may be mediated by a different mechanism.

Isolation and Characterization of a Pink-Pigmented Facultative Methylotrophic Bacterium (분홍색 통성 메탄올 자화세균의 분리 및 특성)

  • 양석훈;김영민
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.63-69
    • /
    • 1989
  • A pink-pigmented facultative methylotrophic bacterium, Methylobacterium sp. strain SY1, was isolated from soil through methanol-enrichment culture technique. The isolate was gram-negative, slightly curved rod, and motile by a single polarly inserted flagellum. The colony was smooth, bright pink, and slimy. The guanine plus cytosine content of the KNA was 66%. The cell was obigately aerobic and exhibited both catalase and oxidase activities. Carotenoid pigment and poly-$\beta$-hydroxybutyrate were present. It was found to have three kinds of plasmid with molecular weights 45,000, 38,500 and 23,000. Growth with methanol(0.5%) was fast ($t_{d}$=6.5h) and was optimal at $30^{\circ}C$ and at pH 7.0. The isolate could grow on several sugars, organic acids, amino acids, amines, and alcohols in addition to the methanol. Methanol was found to be assimilated through the serine pathway.

  • PDF

Improvement of Photoheterotrophic Hydrogen Production of Rhodobacter sphaeroides by Removal of B800-850 Light-Harvesting Complex

  • KIM EUI-JIN;YOO SANG-BAE;KIM MI-SUN;LEE JEONG K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1115-1119
    • /
    • 2005
  • The photoheterotrophic $H_2$ production of Rhodobacter sphaeroides was significantly increased through disruption of the genes coding for uptake hydrogenase and poly-${\beta}$-hydroxybutyrate (PHB) synthase (Lee et al., Appl. Microbiol. Biotechnol. 60: 147-153, 2002). In this work, we further removed the B800-850 light-harvesting (LH) complex from the strain and found an increase in $H_2$ production at the light-saturating cell growth (${\ge}10$ Watts $[W]/m^2$). Neither the mutant nor the wild-type produced more $H_2$ at the brighter light. Accordingly, light does not appear to be limited for the $H_2$ production by the presence of B800-850. However, increase in the level of the spectral complexes resulted in decrease of $H_2$ production. Thus, although the B875 is essential for light harvesting, the consumption of cellular energy for the synthesis of B800-850 and the surplus LH complexes may reduce the energy flow into the $H_2$ production of R. sphaeroides.

Structure and Characteristics of Biodegradable Polyester from Actinobacillus sp. EL-9 (Actinobacillus sp. EL-9로부터 생산된 생분해성 폴리에스터의 구조 및 특성)

  • Son, Hong-Ju;Lee, Gun;Kim, Geun-Ki;Kim, Han-Soo;Kim, Yong-Kyun;Lee, Sang-Jun
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.526-531
    • /
    • 1998
  • In this study, the composition and characteristics of poly-$\beta$-hydroxybutyrate (PHB) biosynthesized by Actinobacillus sp. EL-9 are investigated. PHB produced by Actinobacillus sp. EL-9 was identified as the homopolymer of 3-hydroxy-butyric acid (PHB) by infrared spectroscopy and nuclear magnetic resonance spectroscopy analysis. The melting tem-perature (T$_{m}$), and crystallization temperature(T$_{c}$) of PHB was 169.7$^{\circ}C$ and 69.13$^{\circ}C$, respectively. The viscosity on he basis of Brookfield viscometer was 6.01 ㎗/g. The viscosity-average molecular weight estimated by Mark-Ho-wink-Sakurada equation was 1.08$\times$10$^{6}$ ($\pm$3,000).00).

  • PDF

Current Status of Bacterial Brown Stripe of Rice Caused by Acidovorax avenae subsp. avenae (Acidovorax avenae subsp. avenae에 의한 세균성줄무늬병의 연구동향)

  • 송완엽
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 1999
  • Acidovorax avenae subsp. avenae is the causal pathogen of several hosts including oats corn foxtail millet wheatgrass sugarcane and rice. The pathogen is a seedborne pathogen of rice and known to occur widely in rice growing countries. The pathogen cause inhibition of germination brown stripe on the leaf curling of the leaf sheath and abnormal elongation of the mesocotyl of irce. Bacterial colonies grow slowly and are convex circular and creamy with tan to brown center. The causal baterium is Gram-negative and rod shape with a single polar flagellum Nonfluorescence poly-$\beta$-hydroxybutyrate accumulation and precipitate formation around the colony on the medium are useful in the differentiation of this bacterium from other subspecies of A. avenae as well as nonfluorescent bacteria pathogenic to rice. This bacterium has belonged to the genus of Psdeudomonas but recently was transferred to the new genus Acidovorax on the basis of bacteriological and molecular biological data. However the difference of biochemical characteristics protein profile of the cell and host range among strains should be more clarified. To develop an effective control strategy for this disease understanding of detailed life cycle of the disease ritical environmental factors affecting disease development on each host and relationship to grain discoloration of rice are prerequisite. Although the affected area has been world-widely reported there is on recent progress on the understanding of the bacteriological and ecological characteristics of the causal bacterium and control means of the disease.

  • PDF

Thalassobius aestuarii sp. nov., Isolated from Tidal Flat Sediment

  • Yi Ha-Na;Chun Jong-Sik
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.171-176
    • /
    • 2006
  • A strictly aerobic, non-motile, ovoid-shaped Alphaproteobacteria, designated strain $JC2049^T$ was isolated from a tidal flat sediment sample. The results of 16S rRNA gene sequence analysis indicated that this isolate belonged to the genus Thalassobius, with a sequence similarity of 96.9-97.3% to other valid Thalassobius spp. The cells required 1-7% NaCl for growth (optimum 2%) and accumulated $poly-\beta-hydroxybutyrate$. Nitrite was reduced to nitrogen, but nitrate was not reduced to nitrite. No genetic potential for aerobic anoxygenic photosynthesis was detected. The primary isoprenoid quinone (Ubiquinone-10), predominant cellular fatty acids $(C_{18:1}{\omega}7c,\;11\;methyl\;C_{18:1}\omega7c\;and\;C_{16:0})$ and DNA G+C content (61 mol %) were all consistent with the assignment of this isolate to the genus Thalassobius. Several phenotypic characteristics clearly distinguished our isolate from other Thalassobius species. The degree of genomic relatedness between strain $JC2049^T$ and other Thalassobius species was in a range of 20-43 %. The polyphasic data presented in this study indicates that our isolate should be classified as a novel species within the genus Thalassobius. The name Thalassobius aestuarii sp. novo is therefore proposed for this isolate; the type strain is $JC2049^T(=IMSNU\;14011^T=KCTC\;12049^T=DSM\;15283^T)$.

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

EPS Production, PHB Accumulation and Abiotic Stress Endurance of Plant Growth Promoting Methylobacterium Strains Grown in a High Carbon Concentration

  • Woo, Sung-Man;Subramanian, Parthiban;Ramasamy, Krishnamoorthy;Joe, M. Melvin;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.572-581
    • /
    • 2012
  • In this study, we compared growth pattern, floc yield, Exo-polysaccharides (EPS) production, Poly-${\beta}$-hydroxybutyrate (PHB) accumulation, resistance to osmotic and acid stress in Methylobacterium strains CBMB20, CBMB27, CBMB35, and CBMB110. Modified high C:N ratio medium denoted as HCN-AMS medium was used with a C:N ratio of 30:1. The HCN-AMS medium favored increased growth in all the studied strains. All Methylobacterium strains tested positive for EPS production and showed positive fluorescence with calcoflour stain. Elevated levels of EPS production from 4.2 to 75.0% was observed in HCN-AMS medium. Accumulation of PHB in HCN-AMS medium increased by 3.8, 36.7, and 12.0% in strains CBMB27, CBMB35, and CBMB110 respectively. Among the abiotic stresses, osmotic stress-induced growth inhibition of Methylobacterium strains was found to be lowered when grown in HCN-AMS medium. Likewise, growth inhibition due to acid stress at pH 5.0 was lower for strains grown in HCN-AMS medium compared to growth in AMS medium. Enhanced survivability under stress conditions may be attributed to the high EPS and PHB production at increased carbon concentration in the growth medium.