Thalassobius aestuarii sp. nov., Isolated from Tidal Flat Sediment

  • Yi Ha-Na (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Chun Jong-Sik (School of Biological Sciences and Institute of Microbiology, Seoul National University)
  • Published : 2006.04.01

Abstract

A strictly aerobic, non-motile, ovoid-shaped Alphaproteobacteria, designated strain $JC2049^T$ was isolated from a tidal flat sediment sample. The results of 16S rRNA gene sequence analysis indicated that this isolate belonged to the genus Thalassobius, with a sequence similarity of 96.9-97.3% to other valid Thalassobius spp. The cells required 1-7% NaCl for growth (optimum 2%) and accumulated $poly-\beta-hydroxybutyrate$. Nitrite was reduced to nitrogen, but nitrate was not reduced to nitrite. No genetic potential for aerobic anoxygenic photosynthesis was detected. The primary isoprenoid quinone (Ubiquinone-10), predominant cellular fatty acids $(C_{18:1}{\omega}7c,\;11\;methyl\;C_{18:1}\omega7c\;and\;C_{16:0})$ and DNA G+C content (61 mol %) were all consistent with the assignment of this isolate to the genus Thalassobius. Several phenotypic characteristics clearly distinguished our isolate from other Thalassobius species. The degree of genomic relatedness between strain $JC2049^T$ and other Thalassobius species was in a range of 20-43 %. The polyphasic data presented in this study indicates that our isolate should be classified as a novel species within the genus Thalassobius. The name Thalassobius aestuarii sp. novo is therefore proposed for this isolate; the type strain is $JC2049^T(=IMSNU\;14011^T=KCTC\;12049^T=DSM\;15283^T)$.

Keywords

References

  1. Allgaier, M., H. Uphoff, A. Felske, and I. Wagner-Dobler. 2003. Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl. Environ. Microbiol. 69, 5051-5059 https://doi.org/10.1128/AEM.69.9.5051-5059.2003
  2. Arahal, D.R., M.C. Macian, E. Garay, and M.J. Pujalte. 2005. Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int. J. Syst. Evol. Microbiol. 55, 2371-2376 https://doi.org/10.1099/ijs.0.63842-0
  3. Baumann, L., P. Baumann, M. Mandel, and R.D, Allen. 1972. Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110, 402-429
  4. Chun, J. and M. Goodfellow. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45, 240-245 https://doi.org/10.1099/00207713-45-2-240
  5. Cohen-Bazire, G., W.R. Sistrom, and R.Y. Stanier. 1957. Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J. Cell. Comp. Physiol. 49, 25-68 https://doi.org/10.1002/jcp.1030490104
  6. Collins, M.D. 1985. Analysis of isoprenoid quinones. Methods Microbiol. 18, 329-366 https://doi.org/10.1016/S0580-9517(08)70480-X
  7. De Ley, J., H. Cattoir, and A. Reynaerts. 1970. The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133-142 https://doi.org/10.1111/j.1432-1033.1970.tb00830.x
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791 https://doi.org/10.2307/2408678
  9. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376 https://doi.org/10.1007/BF01734359
  10. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406-416 https://doi.org/10.2307/2412116
  11. Fitch, W.M. and E. Margoliash. 1967. Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155, 279-284 https://doi.org/10.1126/science.155.3760.279
  12. Huss, V.A.R., H. Festl and K.H. Schleifer. 1983. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4, 184-192 https://doi.org/10.1016/S0723-2020(83)80048-4
  13. Jeon, Y.-S., H. Chung, S. Park, I. Hur, J.-H. Lee, and J. Chun. 2005. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171-3173 https://doi.org/10.1093/bioinformatics/bti463
  14. Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules, p. 21-132. In H. N. Munro (ed.), Mammalian protein metabolism, vol. 3. Academic Press, New York
  15. Kim, B.S., H.M. Oh, H. Kang, and J. Chun. 2005. Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. 43, 144-151
  16. Lyman, J. and R.H. Fleming. 1940. Composition of sea water. J. Mar. Res. 3, 134-146
  17. Mesbah, M., U. Premachandran, and W.B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Sys. Bacteriol. 39, 159-167 https://doi.org/10.1099/00207713-39-2-159
  18. Minnikin, D.E., A.G. O'Donnell, M. Goodfellow, G. Alderson, M. Athayle, A. Schaal, and J.H. Parlett. 1984. An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233- 241 https://doi.org/10.1016/0167-7012(84)90018-6
  19. Ruger, H.J. and M.G. Hofle. 1992. Marine star-shapedaggregate- forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 42, 133- 143 https://doi.org/10.1099/00207713-42-1-133
  20. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  21. Smibert, R.M. and N.R. Krieg. 1994. Phenotypic Characterization, p. 607-654. In P. Gerhardt, R.G.E. Murray, W.A. Wood, and N.R. Krieg (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C
  22. Staley, J.T. 1968. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J. Bacteriol. 95, 1921-1942
  23. Swofford, D.L. 1998. Phylogenetic analysis using parsimony (PAUP). Version 4. Sinauer Associates. Suderland, MA
  24. Uchino, Y., A. Hirata., A. Yokota, and J. Sugiyama. 1998. Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J. Gen. Appl. Microbiol. 44, 201-210 https://doi.org/10.2323/jgam.44.201
  25. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr and H.G. Truper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463-464 https://doi.org/10.1099/00207713-37-4-463
  26. Wolff, R. and R. Gemmill. 1997. Purifying and analyzing genomic DNA. In E.D. Green, B. Birren, S. Klapholz, R.M. Myers and P. Hieter (eds.), Genomic Analysis: A Laboratory Manual. Cold Spring Harbor Laboratory Press
  27. Yi, H. and J. Chun. 2004. Comparative phylogeny of Roseobacter clade bacteria based on gyrB, pufL and 16S rRNA gene sequences, Abstr. A019, p. 167. Proc. International Meeting of the Federation of Korean Microbiological Societies
  28. Zobell, C.E. 1941. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J. Mar. Res. 4, 42-75