Browse > Article

Thalassobius aestuarii sp. nov., Isolated from Tidal Flat Sediment  

Yi Ha-Na (School of Biological Sciences and Institute of Microbiology, Seoul National University)
Chun Jong-Sik (School of Biological Sciences and Institute of Microbiology, Seoul National University)
Publication Information
Journal of Microbiology / v.44, no.2, 2006 , pp. 171-176 More about this Journal
Abstract
A strictly aerobic, non-motile, ovoid-shaped Alphaproteobacteria, designated strain $JC2049^T$ was isolated from a tidal flat sediment sample. The results of 16S rRNA gene sequence analysis indicated that this isolate belonged to the genus Thalassobius, with a sequence similarity of 96.9-97.3% to other valid Thalassobius spp. The cells required 1-7% NaCl for growth (optimum 2%) and accumulated $poly-\beta-hydroxybutyrate$. Nitrite was reduced to nitrogen, but nitrate was not reduced to nitrite. No genetic potential for aerobic anoxygenic photosynthesis was detected. The primary isoprenoid quinone (Ubiquinone-10), predominant cellular fatty acids $(C_{18:1}{\omega}7c,\;11\;methyl\;C_{18:1}\omega7c\;and\;C_{16:0})$ and DNA G+C content (61 mol %) were all consistent with the assignment of this isolate to the genus Thalassobius. Several phenotypic characteristics clearly distinguished our isolate from other Thalassobius species. The degree of genomic relatedness between strain $JC2049^T$ and other Thalassobius species was in a range of 20-43 %. The polyphasic data presented in this study indicates that our isolate should be classified as a novel species within the genus Thalassobius. The name Thalassobius aestuarii sp. novo is therefore proposed for this isolate; the type strain is $JC2049^T(=IMSNU\;14011^T=KCTC\;12049^T=DSM\;15283^T)$.
Keywords
Thalassobius aestuarii; Roseobacter clade; Rhodobacteraceae; tidal flat; taxonomy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 23  (Related Records In Web of Science)
Times Cited By SCOPUS : 24
연도 인용수 순위
1 Baumann, L., P. Baumann, M. Mandel, and R.D, Allen. 1972. Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110, 402-429
2 Cohen-Bazire, G., W.R. Sistrom, and R.Y. Stanier. 1957. Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J. Cell. Comp. Physiol. 49, 25-68   DOI
3 Fitch, W.M. and E. Margoliash. 1967. Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155, 279-284   DOI
4 Jeon, Y.-S., H. Chung, S. Park, I. Hur, J.-H. Lee, and J. Chun. 2005. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171-3173   DOI   ScienceOn
5 Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules, p. 21-132. In H. N. Munro (ed.), Mammalian protein metabolism, vol. 3. Academic Press, New York
6 Minnikin, D.E., A.G. O'Donnell, M. Goodfellow, G. Alderson, M. Athayle, A. Schaal, and J.H. Parlett. 1984. An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233- 241   DOI   ScienceOn
7 Yi, H. and J. Chun. 2004. Comparative phylogeny of Roseobacter clade bacteria based on gyrB, pufL and 16S rRNA gene sequences, Abstr. A019, p. 167. Proc. International Meeting of the Federation of Korean Microbiological Societies
8 Ruger, H.J. and M.G. Hofle. 1992. Marine star-shapedaggregate- forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 42, 133- 143   DOI
9 Allgaier, M., H. Uphoff, A. Felske, and I. Wagner-Dobler. 2003. Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl. Environ. Microbiol. 69, 5051-5059   DOI
10 Mesbah, M., U. Premachandran, and W.B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Sys. Bacteriol. 39, 159-167   DOI
11 Uchino, Y., A. Hirata., A. Yokota, and J. Sugiyama. 1998. Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J. Gen. Appl. Microbiol. 44, 201-210   DOI   ScienceOn
12 Swofford, D.L. 1998. Phylogenetic analysis using parsimony (PAUP). Version 4. Sinauer Associates. Suderland, MA
13 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791   DOI   ScienceOn
14 Collins, M.D. 1985. Analysis of isoprenoid quinones. Methods Microbiol. 18, 329-366   DOI
15 Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406-416   DOI   ScienceOn
16 Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
17 Chun, J. and M. Goodfellow. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45, 240-245   DOI   ScienceOn
18 Kim, B.S., H.M. Oh, H. Kang, and J. Chun. 2005. Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. 43, 144-151   과학기술학회마을
19 Lyman, J. and R.H. Fleming. 1940. Composition of sea water. J. Mar. Res. 3, 134-146
20 Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376   DOI
21 Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr and H.G. Truper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463-464   DOI
22 Smibert, R.M. and N.R. Krieg. 1994. Phenotypic Characterization, p. 607-654. In P. Gerhardt, R.G.E. Murray, W.A. Wood, and N.R. Krieg (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C
23 Zobell, C.E. 1941. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J. Mar. Res. 4, 42-75
24 Wolff, R. and R. Gemmill. 1997. Purifying and analyzing genomic DNA. In E.D. Green, B. Birren, S. Klapholz, R.M. Myers and P. Hieter (eds.), Genomic Analysis: A Laboratory Manual. Cold Spring Harbor Laboratory Press
25 Arahal, D.R., M.C. Macian, E. Garay, and M.J. Pujalte. 2005. Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int. J. Syst. Evol. Microbiol. 55, 2371-2376   DOI   ScienceOn
26 Staley, J.T. 1968. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J. Bacteriol. 95, 1921-1942
27 Huss, V.A.R., H. Festl and K.H. Schleifer. 1983. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4, 184-192   DOI
28 De Ley, J., H. Cattoir, and A. Reynaerts. 1970. The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133-142   DOI   ScienceOn