• 제목/요약/키워드: $PM_{2.5}$ Forecasting

검색결과 46건 처리시간 0.027초

일 대학 학생들의 기상정보 이용실태와 만족도 및 건강정보 요구도 (Students' Actual Use and Satisfaction of Meteorological Information and Demands on Health Forecasting at a University)

  • 오진아;박종길
    • 한국간호교육학회지
    • /
    • 제15권2호
    • /
    • pp.251-259
    • /
    • 2009
  • Purpose: Climate change affects human health and calls for a health forecasting service. The purpose of this study was to explore the students' actual use and their satisfaction with meteorological information and the demands on health forecasting at a university in South Kyungsang Province. Method: This study used a descriptive design through structured self-report questionnaires including frequency, contents, purpose, perception, satisfaction of meterological information and need and demand of health forecasting. Data were collected from June 1 to 5, 2009 and analyzed using the SPSS 17.0 program. Descriptive statistics, t-test, ANOVA, $\chi^2$ test and Person's correlation coefficient were used to analyze the data. Result: The majority of the students watched the daily weather information to decide about daily work, outdoor activity or habitually. The mean score of need for health forecasting was $3.44{\pm}.81$, and the demand for health forecasting was $2.93{\pm}1.05$. Significant differences were found in the need for health forecasting according to sex, major, and environmental disease. In addition, the higher the satisfaction of health forecasting, the higher the demand for it. Conclusion: I suggest improving the meteorological information system technically and developing a health forecasting service resulting in a healthier and more comfortable life.

Forecasting of Various Air Pollutant Parameters in Bangalore Using Naïve Bayesian

  • Shivkumar M;Sudhindra K R;Pranesha T S;Chate D M;Beig G
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.196-200
    • /
    • 2024
  • Weather forecasting is considered to be of utmost important among various important sectors such as flood management and hydro-electricity generation. Although there are various numerical methods for weather forecasting but majority of them are reported to be Mechanistic computationally demanding due to their complexities. Therefore, it is necessary to develop and build models for accurately predicting the weather conditions which are faster as well as efficient in comparison to the prevalent meteorological models. The study has been undertaken to forecast various atmospheric parameters in the city of Bangalore using Naïve Bayes algorithms. The individual parameters analyzed in the study consisted of wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation (SR), black carbon (BC), radiative forcing (RF), air temperature (AT), bar pressure (BP), PM10 and PM2.5 of the Bangalore city collected from Air Quality Monitoring Station for a period of 5 years from January 2015 to May 2019. The study concluded that Naive Bayes is an easy and efficient classifier that is centered on Bayes theorem, is quite efficient in forecasting the various air pollution parameters of the city of Bangalore.

동아시아 지역의 계절별 기상패턴에 따른 우리나라 PM2.5 농도 및 기여도 특성 분석: 2015년 집중측정 기간을 중심으로 (Analysis of PM2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patternsin East Asia: Focusing on the Intensive Measurement Periodsin 2015)

  • 남기표;이대균;장임석
    • 환경영향평가
    • /
    • 제28권3호
    • /
    • pp.183-200
    • /
    • 2019
  • 본 연구에서는 지상 $PM_{2.5}$ 측정 자료와 일기도 자료, WRF 및 CMAQ 모델을 활용하여 동북아시아 지역의 계절별 $PM_{2.5}$ 거동특성을 분석하였으며, 대기질 모델에 BFM을 적용하여 우리나라 $PM_{2.5}$ 농도에 대한 계절별 국내외 기여도를 평가하였다. 일기도 자료를 기반으로 국내 $PM_{2.5}$ 측정 자료 및 대기질 모사결과를 통해 $PM_{2.5}$의 거동특성을 분석한 결과, 동북아 지역에서의 $PM_{2.5}$는 장거리 수송된 대기오염 물질의 유입 및 대기정체 현상에 기인한 농도의 증가 또는 깨끗한 공기의 유입에 따른 농도의 감소 등의 특징이 계절별 종관기상 특성에 따라 상이하게 나타났다. 대기질 모델에 BFM (Brute-Force Method)을 적용하여 우리나라 6개 집중측정소 지점의 $PM_{2.5}$ 농도에 대한 국내외 기여도 평가를 수행한 결과, 백령도 지역은 낮은 자체 배출량과 동시에 중국으로부터 인접한 지리적 특성으로 인해 국외로부터의 기여가 지배적인 영향을 미치는 것으로 나타났다. 반면, 서울, 울산과 같이 높은 자체 배출량 특성을 나타내는 지역의 경우, $PM_{2.5}$에 대한 국외 기여도는 타 지역에 비해 상대적으로 낮게 나타남과 동시에 계절에 따른 기여도의 표준편차는 상대적으로 높게 나타나는 특징을 보였다. 본 연구는 우리나라를 중심으로 계절별 기상조건 변화에 따른 동북아 지역의 $PM_{2.5}$ 거동특성을 분석하여 국내 대기오염물질 현상에 대한 이해를 증진함과 동시에, 지역 배출특성에 따라 $PM_{2.5}$ 농도에 대한 국내외 기여도는 상이할 수 있음을 알려 향후 대기질 개선 대책 수립시 기초자료로 활용될 수 있을 것으로 기대된다.

PM2.5 예보를 위한 모델 성능평가와 편차보정 효과 분석 (Model Performance Evaluation and Bias Correction Effect Analysis for Forecasting PM2.5 Concentrations)

  • 김영성;최용주;김순태;배창한;박진수;신혜정
    • 한국대기환경학회지
    • /
    • 제33권1호
    • /
    • pp.11-18
    • /
    • 2017
  • The performance of a modeling system consisting of WRF model v3.3 and CMAQ model v4.7.1 for forecasting $PM_{2.5}$ concentrations were evaluated during the period May 2012 through December 2014. Twenty-four hour averages of $PM_{2.5}$ and its major components obtained through filter sampling at the Bulgwang intensive measurement station were used for comparison. The mean predicted $PM_{2.5}$ concentration over the entire period was 68% of the mean measured value. Predicted concentrations for major components were underestimated except for $NO_3{^-}$. The model performance for $PM_{2.5}$ generally tended to degrade with increasing the concentration level. However, the mean fractional bias (MFB) for high concentration above the $80^{th}$ percentile fell within the criteria, the level of accuracy acceptable for standard model applications. Among three bias correction methods, the ratio adjustment was generally most effective in improving the performance. Albeit for limited test conditions, this analysis demonstrated that the effects of bias correction were larger when using the data with a larger bias of predicted values from measurement values.

거창지역 사과원 농약사용 실태분석 (Analysis of Pesticide Applications on Apple Orchards in Geochang, Korea)

  • 장일;김향미;이순원;최경희;서상재
    • 농약과학회지
    • /
    • 제19권2호
    • /
    • pp.93-100
    • /
    • 2015
  • 거창지역에서 사과재배 50농가를 대상으로 2012년부터 2013년까지 2년간 사용농약 및 사용량, 선택방법, 살포실태 등을 분석한 결과, 연간 살균제는 $13.9{\pm}3.5$회, 살충제 $12.6{\pm}3.2$회, 살비제 $2.6{\pm}1.3$회를 살포하였으며, 살균제는 갈색무늬병, 탄저병, 점무늬낙엽병, 살충제는 복숭아순나방, 복숭아심식나방, 응애류 등을 방제하기 위하여 주로 사용되었다. 농약판매상은 병해충의 발생을 현장에서 직접 파악하지 않고 농약을 판매하였으며, 적용작물에 등록되어 있지 않은 농약을 판매하는 경우도 있었다. 대부분의 농민들은 농약을 스스로 선택하지 못하는 등 판매상에 대한 의존도가 82.5%로 매우 높았다. 병해충종합관리(IPM)체계와 관련하여 거창지역의 사과원에서 살포되는 살균제, 살충제, 살비제의 성분조사를 통해 실질적으로 빈번하게 살포되는 농약을 분석하고, FAO의 권장기준에 부합하는지 비교한 결과 대부분의 약제가 권장기준에 부합하였다.

수도권 지역 도시대기측정소 PM2.5, PM10, O3 농도의 지리적 분포 특성 (Geographical Characteristics of PM2.5, PM10 and O3 Concentrations Measured at the Air Quality Monitoring Systems in the Seoul Metropolitan Area)

  • 강정은;문다솜;김재진;최진영;이재범;이대균
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.657-664
    • /
    • 2021
  • 본 연구에서는 수도권 지역의 대기오염물질(PM2.5, PM10, O3) 농도와 지형 고도, 건물 면적비, 인구 밀도의 상관성을 조사하였다. 지형 고도와 건물 면적비를 분석하기 위해 국토지리정보원에서 제공하는 수치지형도를 이용하였고, 건물 면적비를 계산하기 위해 수도권 지역을 TM 중부원점을 기준으로 수평 9 km × 9 km 격자로 구분하였다. 인구 밀도는 국가통계포털의 행정구역별 면적과 인구수 자료를 이용하였다. 대기오염물질 농도 자료는 수도권에 위치한 도시대기측정소 146개 지점의 PM2.5, PM10, O3 농도 측정 자료를 이용하였다. 분석 기간은 2010년 1월부터 2020년 12월까지이고, 1시간 평균 농도 자료를 이용하여 월평균 농도를 계산하였다. 지형 고도는 경기도 북부와 동부 지역에서 높았고 서해안에 근접할수록 낮았다. 건물 면적비와 인구밀도 분포는 서로 유사하였고, 서울특별시에서 가장 높았으며, 산악과 해안지역에서는 낮게 나타났다. 월평균 PM2.5과 PM10 농도는 봄철과 겨울철(1월~3월)에 높았고 O3 농도는 늦봄부터 초여름(4~6월)까지 높았다. 농도가 높은 3개월에 대해서 AMQS 지점별 평균 농도를 비교·분석하였다. 건물면적비나 인구밀도와 대기오염물질 농도 사이에는 음의 상관 관계가 분석되었다(인구밀도와 PM2.5, PM10 농도 사이는 약한 음의 상관관계가, O3 농도와는 비교적 강한 음의 상관관계). 반면, 대기오염물질 농도와 도시대기측정소 측정 고도 사이의 뚜렷한 상관성을 나타나지 않았는데, 향후, 이에 대한 연구 수행이 필요할 것으로 판단된다.

2014년 2월 서울의 고농도 미세먼지 기간 중에 CMAQ-DDM을 이용한 국내외 기여도 분석 (Analysis of Domestic and Foreign Contributions using DDM in CMAQ during Particulate Matter Episode Period of February 2014 in Seoul)

  • 김종희;최대련;구윤서;이재범;박현주
    • 한국대기환경학회지
    • /
    • 제32권1호
    • /
    • pp.82-99
    • /
    • 2016
  • This study was carried out to understand the regional contribution of Particulate Matter (PM) emissions from East Asia ($82^{\circ}{\sim}149^{\circ}E$, $18^{\circ}{\sim}53^{\circ}N$) to Seoul during high concentration period in February 2014. The Community Multi-scale Air Quality (CMAQ) version 5.0.2 with Decoupled Direct Method (DDM) was used to analyze levels of contributions over Seoul. In order to validate model performance of the CMAQ, predicted PM and its chemical species concentrations were compared to observations in China and Seoul. Model predictions could depict the daily and hourly variations of observed PM. The calculated PM concentrations, however, had a tendency of underestimation. The discrepancies are due to uncertainties of meteorological data, emission inventories and CMAQ model itself. The high PM concentration in Seoul was induced by stationary anticyclone over the West Coast of Korea during 24 to 27 February. The DDM in CMAQ was used to analyze the contributions of emissions from East Asia on Seoul during this PM episode. $PM_{10}$ concentration in Seoul is contributed by 39.77%~53.19% from China industrial and urban region, 15.37%~37.10% from South Korea, and 9.03%~18.05% North Korea. These indicate that $PM_{10}$ concentrations in Seoul during the episode period are dominated by long-range transport from China region as well as domestic sources. It was also found that the largest contribution region in China were Shandong peninsula during the PM event period.

규칙기반 초미세먼지 상태 추론 (Particulate Matter (PM2.5) State Inference by Rule Induction)

  • 최락현;강원석;손창식
    • 대한임베디드공학회논문지
    • /
    • 제13권4호
    • /
    • pp.179-185
    • /
    • 2018
  • Particulate Matter (PM2.5) has various adverse effects on health. Climate and industry activity and traffic volume are the main causes, especially in urban area. In order to construct an effective forecasting system, many measurement systems are required, but it is impossible in reality. Therefore, in this study, we propose a method to infer PM2.5 condition by using rule induction technique. The experimental results showed a classification accuracy of 71%.

기상-대기질 모델을 활용한 2010~2014년 우리나라 PM10 변동 특성 분석: 기상 요인을 중심으로 (Analysis on the Characteristics of PM10 Variation over South Korea from 2010 to 2014 using WRF-CMAQ: Focusing on the Analysis of Meteorological Factors)

  • 남기표;이대균;박지훈
    • 환경영향평가
    • /
    • 제27권5호
    • /
    • pp.509-520
    • /
    • 2018
  • 본 연구에서는 기상조건 변화에 따른 우리나라 $PM_{10}$ 농도변화 범위를 정량적으로 산정하기 위하여, 2010년에서 2014년까지(5년간) 모델의 입력자료인 국내외 배출량을 동일하게 가정하였을 때 기상조건에 따른 우리나라 $PM_{10}$ 농도변화 범위를 분석하였다. 본 분석에 사용된 모델은 WRF(ver.3.8.1)과 CMAQ(ver.5.0.2)이며, 기상 입력자료는 NCEP FNL $1^{\circ}{\times}1^{\circ}$ 자료, 국외 배출량 목록은 MIX 2010, 국내 배출량 목록은 CAPSS 2010을 이용하였다. 모델 모사결과는 2010년의 전국 일평균 $PM_{10}$ 농도에 대해 측정값과 0.82의 R값을 보이며 실제 $PM_{10}$ 농도의 증감경향을 잘 나타냈지만, 모델은 실제 $PM_{10}$ 농도와 비교하여 과소모의 하는 것으로 나타났다. 기상 및 대기질 모델을 통해 모사된 우리나라 연평균 $PM_{10}$ 농도는 기상조건의 변화로 인해 2010년 대비 평균적으로 약 $2.6{\mu}g/m^3$의 농도변화를 나타내었으며, 계절별로는 봄, 여름, 가을, 겨울에 대해 각각 $4.8{\mu}g/m^3$, $1.7{\mu}g/m^3$, $1.7{\mu}g/m^3$, $4.2{\mu}g/m^3$의 표준편차를 나타내며 봄철과 겨울철에 상대적으로 큰 $PM_{10}$ 농도 차이를 나타냈다. 전국 18개 권역을 대상으로한 지역별 분석 결과에서는 기상조건의 변화로 인해 모든 지역에서 연평균 $PM_{10}$ 농도가 $1.0{\mu}g/m^3$ 이상의 표준편차를 나타냈으며, 특히 서울과 경기북부, 경기남부, 강원영서, 충북 지역의 경우 $2.0{\mu}g/m^3$ 이상으로 타 지역에 비해 상대적으로 높은 차이를 나타냈다.

Numerical Simulation of Extreme Air Pollution by Fine Particulate Matter in China in Winter 2013

  • Shimadera, Hikari;Hayami, Hiroshi;Ohara, Toshimasa;Morino, Yu;Takami, Akinori;Irei, Satoshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.25-34
    • /
    • 2014
  • In winter 2013, extreme air pollution by fine particulate matter ($PM_{2.5}$) in China attracted much public attention. In order to simulate the $PM_{2.5}$ pollution, the Community Multiscale Air Quality model driven by the Weather Research and Forecasting model was applied to East Asia in a period from 1 January 2013 to 5 February 2013. The model generally reproduced $PM_{2.5}$ concentration in China with emission data in the year 2006. Therefore, the extreme $PM_{2.5}$ pollution seems to be mainly attributed to meteorological (weak wind and stable) conditions rather than emission increases in the past several years. The model well simulated temporal and spatial variations in $PM_{2.5}$ concentrations in Japan as well as China, indicating that the model well captured characteristics of the $PM_{2.5}$ pollutions in both areas on the windward and leeward sides in East Asia in the study period. In addition, contribution rates of four anthropogenic emission sectors (power generation, industrial, residential and transportation) in China to $PM_{2.5}$ concentration were estimated by conducting zero-out emission sensitivity runs. Among the four sectors, the residential sector had the highest contribution to $PM_{2.5}$ concentration. Therefore, the extreme $PM_{2.5}$ pollution may be also attributed to large emissions from combustion for heating in cold regions in China.