DOI QR코드

DOI QR Code

Analysis on the Characteristics of PM10 Variation over South Korea from 2010 to 2014 using WRF-CMAQ: Focusing on the Analysis of Meteorological Factors

기상-대기질 모델을 활용한 2010~2014년 우리나라 PM10 변동 특성 분석: 기상 요인을 중심으로

  • Nam, Ki-Pyo (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Lee, Dae-Gyun (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Park, Ji-Hoon (Air Quality Research Division, Climate and Air Quality Research Department, NIER)
  • 남기표 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 이대균 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 박지훈 (국립환경과학원 기후대기연구부 대기환경연구과)
  • Received : 2018.09.11
  • Accepted : 2018.10.08
  • Published : 2018.10.31

Abstract

The impact of meteorological condition on surface $PM_{10}$ concentrations in South Korea was quantitatively simulated from 2010 to 2014 using WRF (ver.3.8.1) and CMAQ (5.0.2) model. The result showed that seasonal standard deviations of PM10 induced by change of weather conditions were $4.8{\mu}g/m^3$, $1.7{\mu}g/m^3$, $1.7{\mu}g/m^3$, $4.2{\mu}g/m^3$ for spring, summer, autumn and winter compared to 2010, respectively, with the annual mean standard deviation of about $2.6{\mu}g/m^3$. The results of 18 regions in South Korea showed standard deviation of more than $1{\mu}g/m^3$ in all regions and more than $2{\mu}g/m^3$ in Seoul, Northern Gyeonggi, Southern Southern Gyeonggi, Western Gangwon and Northern Chungcheong in South Korea.

본 연구에서는 기상조건 변화에 따른 우리나라 $PM_{10}$ 농도변화 범위를 정량적으로 산정하기 위하여, 2010년에서 2014년까지(5년간) 모델의 입력자료인 국내외 배출량을 동일하게 가정하였을 때 기상조건에 따른 우리나라 $PM_{10}$ 농도변화 범위를 분석하였다. 본 분석에 사용된 모델은 WRF(ver.3.8.1)과 CMAQ(ver.5.0.2)이며, 기상 입력자료는 NCEP FNL $1^{\circ}{\times}1^{\circ}$ 자료, 국외 배출량 목록은 MIX 2010, 국내 배출량 목록은 CAPSS 2010을 이용하였다. 모델 모사결과는 2010년의 전국 일평균 $PM_{10}$ 농도에 대해 측정값과 0.82의 R값을 보이며 실제 $PM_{10}$ 농도의 증감경향을 잘 나타냈지만, 모델은 실제 $PM_{10}$ 농도와 비교하여 과소모의 하는 것으로 나타났다. 기상 및 대기질 모델을 통해 모사된 우리나라 연평균 $PM_{10}$ 농도는 기상조건의 변화로 인해 2010년 대비 평균적으로 약 $2.6{\mu}g/m^3$의 농도변화를 나타내었으며, 계절별로는 봄, 여름, 가을, 겨울에 대해 각각 $4.8{\mu}g/m^3$, $1.7{\mu}g/m^3$, $1.7{\mu}g/m^3$, $4.2{\mu}g/m^3$의 표준편차를 나타내며 봄철과 겨울철에 상대적으로 큰 $PM_{10}$ 농도 차이를 나타냈다. 전국 18개 권역을 대상으로한 지역별 분석 결과에서는 기상조건의 변화로 인해 모든 지역에서 연평균 $PM_{10}$ 농도가 $1.0{\mu}g/m^3$ 이상의 표준편차를 나타냈으며, 특히 서울과 경기북부, 경기남부, 강원영서, 충북 지역의 경우 $2.0{\mu}g/m^3$ 이상으로 타 지역에 비해 상대적으로 높은 차이를 나타냈다.

Keywords

References

  1. Benjey W, Houyoux M, Susick J. 2001. Implementation of the SMOKE emissions data processor and SMOKE tool input data processor in Models-3. U.S. EPA.
  2. Byun DW, Ching S. 1999. Science Algorithms of the EPA Models-3 Community Multi-scale Air Quality(CMAQ) Modeling System. EPA Report. EPA/600/R-99/030, NERL, Research Triangle Park, NC.
  3. Carter W. 1999. Documentation of the SAPRC- 99 Chemical Mechanism for VOC Reactivity Assessment. Report to California Air Resources Board.
  4. Chan YC, Simpson RW, McTainsh GH, Vowles, Cohen DD, Bailey GM. 1997. Characterisation of chemical species in $PM_{2.5}$ and $PM_{10}$ aerosols in Brisbane, Australia. Atmospheric Environment. 31(22): 3773-3785. https://doi.org/10.1016/S1352-2310(97)00213-6
  5. Chen F, Dudhia. 2001. Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev.. 129: 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  6. Choi JK, Heo JB, Ban SJ, Yi SM, Zoh KD. 2013. Source apportionment of $PM_{2.5}$ at the coastal area in Korea. Science of the Total Environment. 447: 370-380. https://doi.org/10.1016/j.scitotenv.2012.12.047
  7. Dockery DW, Pope CA. 1994. Acute respiratory effects of particulate air pollution. Annual review of public health. 15(1): 107-132. https://doi.org/10.1146/annurev.pu.15.050194.000543
  8. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE. 1993. An association between air pollution and mortality in six US cities. New England journal of medicine. 329(24): 1753-1759. https://doi.org/10.1056/NEJM199312093292401
  9. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P. 1995. A global model of natural volatile organic compound emissions. J. Geophys. Res.. 100: 8873-8892. https://doi.org/10.1029/94JD02950
  10. Han JS, Kim YM, Ahn JY, Kong BJ, Choi JS, Lee SU, Lee SJ. 2006. Spatial distribution and variation of long-range transboundary air pollutants flux during 1997-2004. Atmosphere. 22(1): 99-106.
  11. Hong SY, Dudhia J, Chen SH. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review. 132(1): 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  12. Hong SY, Noh Y, Dudhia J. 2006. A new vertical diffusion package with and explicit treatment of entrainment processes. Monthly weather review. 134(9): 2318-2341. https://doi.org/10.1175/MWR3199.1
  13. Jung J, Kim YJ, Lee KY, Cayetano MG, Batmunkh T, Koo JH, Kim J. 2010. Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008. Atmospheric Chemistry and Physics, 10(12): 5391-5408. https://doi.org/10.5194/acp-10-5391-2010
  14. Katsouyanni K, Touloumi G, Spix C, Schwartz J, Balducci F, Medina S, Rossi G, Wojtyniak B, Sunyer J, Bacharova L, Schouten JP, Ponka A. 1997. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. Bmj. 314(7095): 1658 https://doi.org/10.1136/bmj.314.7095.1658
  15. Kim BU, Kim OG, Kim HC, Kim ST. 2016. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea. Journal of the Air and Waste Management Association. 66(9): 863-873. https://doi.org/10.1080/10962247.2016.1175392
  16. Kim DY. 2008. PM Analysis Using CMAQ in Seoul Metropolitan Area. Policy Research Gyeonggi Research Institute. 6. [Korean Literature]
  17. Kim HC, Kim EH, Bae CH, Cho JH, Kim BU, Kim ST. 2017. Regional Contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation and sensitivity to meteorology and emissions inventory. Atmos. Chem. Phys., 17(17): 10315-10332. https://doi.org/10.5194/acp-17-10315-2017
  18. Lee G, Oh HR, Ho CH, Park R. DS, Kim JW, Chang LS, Lee JB, Choi JS, Sung MY. 2018. Slow decreasing tendency of fine particles compared to coarse particles associated with recent hot summers in Seoul, Korea. Aerosol and Air Quality Research. 18(9): 2185-2194. https://doi.org/10.4209/aaqr.2017.10.0403
  19. Li M, Zhang Q, Kurokawa J, Woo JH, He KB, Lu Z, Ohara T, Song Y, Streets DG, Carmichael GR, Cheng YF, Hong CP, Huo H, Jiang XJ, Kang SC, Liu F, Su H, Zheng B. 2015. MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects. Atmos. Chem. Phys. Discuss. 15(23): 34-813.
  20. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres. 102(D14): 16663-16682. https://doi.org/10.1029/97JD00237
  21. NIER. 2014. Annual Report of Air Quality In Korea 2014. NIER-GP2015-087. p. 17-18. [Korean Literature]
  22. NCEP. 2000. NCEP FNL Operational Model Global Tropospheric Analysis, continuing from July, 1999. Research Data Archive at the National Center for Atmospheric Research. Computational and Information System Laboratory, https://doi.org/10.5065/D6M043C6 (accessed on Jan. 03, 2018)
  23. Nishiwaki Y, Michikawa T, Takebayashi T, Nitta H, Iso H, Inoue M, Tsugane S. 2013. Long-term exposure to particulate matter in relation to mortality and incidence of cardiovascular disease: the JPHC Study. Journal of atherosclerosis and thrombosis. 30(3): 296-309.
  24. Seigneur C, Pun B, Pai P, Louis JF, Solomon P, Emery C, Morris R, Zahniser M, Worsnop D, Koutrakis P, White W, Tombach I. 2000. Guidance for the Performance Evaluation of Three-Dimensional Air Quality Modeling Systems for Particulate Matter and Visibility. Journal of the Air & Waste Management Association. 50(4): 588-599. https://doi.org/10.1080/10473289.2000.10464036
  25. Shin MK, Lee CD, Ha HS, Choe CS, Kim YH. 2007. The influence of meteorological factors on PM10 concentration in Incheon. Journal of Korean Society for Atmospheric Environment. 23(3): 322-331. https://doi.org/10.5572/KOSAE.2007.23.3.322
  26. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X, Wang W, Powers JG. 2008. A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR. National Center for Atmospheric Research, Boulder, CO, 125.
  27. Tao WK, Simpson J, McCumber M. 1989. An ice-water saturation adjustment, Monthly Weather Review. 117(1): 231-235. https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
  28. U. S. EPA, 2007. Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, $PM_{2.5}$, and regional haze. EPA-454/B-07-002, Research Triangle Park.
  29. WHO. 2013. Health Effects of Particulate Matter- Policy implications for countries in eastern Europe. Caucasus and central Asia. p. 6-7.
  30. Willmott CJ. 1981. On the validation of models. Physical geography. 2(2): 184-194. https://doi.org/10.1080/02723646.1981.10642213
  31. Zelikoff JT, Chen LC, Cohen MD, Fang K, Gordon T, Li Y, Nadziejko C, Schlesinger RB. 2003. Effects of inhaled ambient particulate matter on pulmonary antimicrobial immune defense. Inhalation Toxicology. 15(2): 131-150 https://doi.org/10.1080/08958370304478
  32. Zoran DR, Miljevic B, Surawski NC, Morawska L, Gong KM, Goh F, Yang IA. 2012. Respiratory health effects of diesel particulate matter. Respirology. 17(2): 201-212. https://doi.org/10.1111/j.1440-1843.2011.02109.x