• Title/Summary/Keyword: $PI^2$ Control

Search Result 668, Processing Time 0.032 seconds

Design of Lateral Fuzzy-PI Controller for Unmanned Quadrotor Robot (무인 쿼드로터 로봇 횡 방향 제어를 위한 Fuzzy-PI 제어기 설계)

  • Baek, Seung-Jun;Lee, Deok-Jin;Park, Jong-Ho;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.164-170
    • /
    • 2013
  • Quadrotor UAV (Unmanned Aerial Vehicle) is a flying robotic platform which has drawn lots of attention in the recent years. The attraction comes from the fact that it is able to perform agile VTOL (Vertical Take-Off Landing) and hovering functions. In addition, the efficient modular structure composed of four electric rotors makes its design easier compared to other single-rotor type helicopters. In many cases, a quadrotor often utilizes vision systems in order to obtain altitude control and navigation solution in hostile environments where GPS receivers are not working or deniable. For carrying out their successful missions, it is essential for flight control systems to have fast and stable control responses of heading angle outputs. This paper presents a Fuzzy Logic based lateral PI controller to stabilize and control the quadrotor vehicle equipped with vision systems. The advantage of using the fuzzy based PI controller lies in the fact that it could acquire a desired output response of a heading angle even in presence of disturbances and uncertainties. The performance comparison of the newly proposed Fuzzy-PI controller and the conventional PI controller was carried out with various simulation results.

A Systematic Engineering Approach to Design the Controller of the Advanced Power Reactor 1400 Feedwater Control System using a Genetic Algorithm

  • Tran, Thanh Cong;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.58-66
    • /
    • 2018
  • This paper represents a systematic approach aimed at improving the performance of the proportional integral (PI) controller for the Advanced Power Reactor (APR) 1400 Feedwater Control System (FWCS). When the performance of the PI controller offers superior control and enhanced robustness, the steam generator (SG) level is properly controlled. This leads to the safe operation and increased the availability of the nuclear power plant. In this paper, a systems engineering approach is used in order to design a novel PI controller for the FWCS. In the reverse engineering stage, the existing FWCS configuration, especially the characteristics of the feedwater controller as well as the feedwater flow path to each SG from the FWCS, were reviewed and analysed. The overall block diagram of the FWCS and the SG was also developed in the reverse engineering process. In the re-engineering stage, the actual design of the feedwater PI controller was carried out using a genetic algorithm (GA). Lastly, in the validation and verification phase, the existing PI controller and the PI controller designed using GA method were simulated in Simulink/Matlab. From the simulation results, the GA-PI controller was found to exhibit greater stability than the current controller of the FWCS.

An Investigation on Step Responses of Pitch PI Controller for a 2MW Wind Turbine Using Bladed S/W (Bladed S/W를 이용한 2MW급 풍력터빈에 대한 피치 PI 제어기의 계단응답 고찰)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • The pitch control system in wind turbines becomes more and more important as the wind turbines are larger in multi-MW size. PI controller has been applied in most pitch controllers and it has been known that gain-scheduling is essential for pitch control of wind turbines. A demo model of 2 MW wind turbine which represents the whole dynamics of wind turbine including dynamic behaviors of blade, tower and rotational shaft is given in the commercial Bladed S/W for real wind turbines. In this paper, some results on step responses of the pitch PI controller and effectiveness of gain-scheduled pitch PI controller are presented through the Bladed S/W for the 2 MW wind turbine.

PI Controller Design of the Refrigeration System Based on Dynamic Characteristic of the Second Order Model

  • Jung, Young-Mi;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.200-206
    • /
    • 2014
  • This paper deals with deterministic PI controller design based on dynamic characteristics for refrigeration system. The temperature control system of an oil cooler is described as a typical 2nd order model of the refrigeration system which has zeros in a transfer function. PI controller gains satisfying control specifications are represented by the dynamic characteristic functions using relationship between the parameters and the control specifications in the model. Phase margin was considered to increase robustness of the oil cooler control system. Furthermore, the influence of zeros in the model to the control specifications was analyzed in detail for improving control performance. The validity of the suggested PI controller design was investigated using the four types of gains which had been already confirmed their control performances through experiments.

A Study for the Available Adjustment Range of Gain at P, PI Control for the Retarded Processes (시간지연을 갖는 제어대상에 대한 P, PI 제어의 유효 게인 조정 범위에 관한 연구)

  • 강인철;최순만;최재성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.207-212
    • /
    • 2001
  • In this paper, a method to be able to decide the possible maximum gain of P, PI control for the retarded processes under stable condition is proposed. At first, adjustable parameter set causing stability limit are obtained based on the frequency domain condition which makes the roots of transfer function locate on the $j\omega$ axis. And the cut-in frequency $\omega{_p}$ to bring the parameter set to P control from PI control is derived by an equation with 2 parameters L and $T_m$ given, then $\omega{_p}$ is used to compute the maximum gain with stable condition. For the calculation, the controlled process of first order system with time delay element is introduced and all parameters are presumed to be time invariant.

  • PDF

Robust pole assignment of proportional integral control system

  • Kim, Hwan-Seong;Ogasawara, Kenichi;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.373-378
    • /
    • 1994
  • This paper is concerned with assess the possibility of robust pole assignment of proportional integral(PI) state feedback control system. First, the equivalence relations between a PI control system and an argumented control system proposed by Kawaji and Kim(1994) are extended from the new points of views of invariant closed loop poles. Second, on the relations, a remarkable result that the integral gain of PI control system is directly related to the insensitivity of system is presented. And, it is shown that the design of robust PI pole assignment is possible under the certain conditions.

  • PDF

Implementation of PI Controllers with the FPGA

  • Watjanathepin, Napat;Eawsakul, Nitipat;Puangpool, Manoon;Namahoot, Alongon;Yimman, Surapun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1028-1031
    • /
    • 2003
  • The implementation of PI controller with the FPGA is for controlling the speed of DC motor in the digital system. FPGA is assigned to 1. Outer speed control loop. The signal from the speed comparison will be in the PI controlling form transfer function of Direct Form I or PI Parallel Form. 2.Inner current control loop. The signal from the current comparison will be converted into switching function in sliding mode condition. Its output will be a controller of DC motor in the next step. The result from using FPGA will be close to the value of simulation in the analog control system. The sampling rate 40 kHz and 16 bit of 2's complement data are defined in this presentation.

  • PDF

Tuning Algorithm for PID Controller Using Model Reduction in frequency Domain (주파수 영역에서의 모델 축소를 이용한 PID 제어기의 동조 알고리즘)

  • Cho, Joon-Ho;Choi, Jung-Nae;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2114-2116
    • /
    • 2001
  • Model reduction from high order systems to low order systems in frequency domain is considered four point (${\angle}$G(jw)=0, - ${\pi}/2$, ${\pi}$, and -3${\pi}$/2) instead of two point (${\angle}$G(jw) = - ${\pi}$/2,- ${\pi}$) of existing method in Nyquist curve. The Performances of reduced order model by proposed approach is similar to original model. In this paper, we proposed a new tuning algorithm for PID controller using model reduction in frequency domain. Simulations for some examples with varies dynamic characteristics are provided to show the effectiveness of the proposed tuning algorithm for PID controller using model reduction.

  • PDF

Design of PI and Feedforward Controller for Precise Temperature Control of Oil Cooler System (오일쿨러의 고정밀 온도 제어를 위한 PI 및 피드포워드 제어기 설계)

  • Byun, J.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.89-95
    • /
    • 2010
  • This paper deals with design method of proportional-integral(PI) and feedforward controller for obtaining precise temperature and high energy efficiency of oil cooler system in machine tools. The compressor's speed and opening angle of an electronic expansion valve are controlled to keep reference value of temperature at oil outlet and superheat of an evaporator. Especially, the feedforward controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.l^{\circ}C$ and maximum overshoot $0.2^{\circ}C$ under abrupt disturbances.

Fuzzy PI with Gain Scheduling Control for a Flexible Joint Robot

  • Hidenori, Kimura;Lee, Sang-Gu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.2-93
    • /
    • 2001
  • This paper presents the implementation of fuzzy PI gain scheduling controller (FPICGS) for controlling flexible joint robot arms with uncertainties from time-varying load. The term FPICGS is called based on a combination of fuzzy PI control scheme with a set of rule bases. Principle of design for a FPICGS is given along with the implementation of the designed computer aided control system. The experiment reveals an effectiveness of the proposed control scheme for flexible joint robot arms driven by a DC motorhooked with a spring which both parameters are completely unknown parameters ...

  • PDF