• Title/Summary/Keyword: $P2X_2$

Search Result 7,006, Processing Time 0.043 seconds

WEYL@S THEOREMS FOR POSINORMAL OPERATORS

  • DUGGAL BHAGWATI PRASHAD;KUBRUSLY CARLOS
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.529-541
    • /
    • 2005
  • An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl's$ theorem.

The Magnetic Properties of Co-Ni-Fe-N Soft Magnetic Thin Films

  • Kim, Y. M.;Park, D.;Kim, K. H.;Kim, J.;S. H. Han;Kim, H. J.
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.120-123
    • /
    • 2000
  • Co-Ni-Fe-N thin films were fabricated by a $N_2$ reactive rf magnetron sputtering method. The nitrogen partial pressure ($P_{N2}$) was varied in the range 0~10% . As$P_{N2}$ increases in this range, the saturation magnetization $B_s$ linearly decreases from 19.8 kG to 14 kG and the electrical resistivity ($\rho$) increases from 27 to 155 $\mu\Omegacm$. The coercivity $H_c$ exhibits the minimum value at 4% $P_{N2}$. The magnetic anisotropy fields ($H_k$) are in the range of 20$\sim$50 Oe. High frequency characteristics of $(Co_{22.2}Ni_{27.6}Fe_{50.2})_{100-x}N_x$ films are excellent in the range of 3$\sim$5% of $P_{N2}$. In particular, the effective permeability of the film fabricated at 4% $P_{N2}$ is 800, which is maintained up to 600 MHz. This film also shows Bs of 17.5 kG, $H_c$/ of 1.4 Oe, resistivity of 98$\mu\Omegacm$ and $H_k$ of about 25 Oe. Also, the corrosion resistance of $(Co_{22.2}Ni_{27.6}Fe_{50.2})_{100-x}N_x$ films was imp roved with increasing N concentration.

  • PDF

THE MAGNETIC PROPERTIES OF Co-Ni-Fe-N SOFT MAGNETIC THIN FILMS

  • Kim, Y. M.;Park, D.;Kim, K. H.;Kim, J.;S. H. Han;Kim, H. J.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.492-499
    • /
    • 2000
  • Co-Ni-Fe-N thin films were fabricated by a N$\sub$2/ reactive rf magnetron sputtering method. The nitrogen partial pressure (P$\sub$N2/) was varied in the range of 0∼10%. As P$\sub$N2/ increases in this range, the saturation magnetization (B$\sub$s/) linearly decreases from 19.8 kG to 14 kG and the electrical resistivity ($\rho$) increased from 27 to 155 ${\mu}$$\Omega$cm. The coercivity (H$\sub$c/) exhibits the minimum value at 4% of P$\sub$N2/. The magnetic anisotropy (H$\sub$k/) are in the range of 20∼50 Oe. High frequency characteristics of (Co$\sub$22.2/Ni$\sub$27.6/Fe$\sub$50.2/)$\sub$100-x/N$\sub$x/ films are excellent in the range of 3∼5% of P$\sub$N2/. Especially the effective permeability of the film fabricated at 4% of P$\sub$N2/ is 800, which is maintained up to 600 MHz. This film also shows Bs of 17.5 kG, H$\sub$c/ of 1.4 Oe, resistivity of 98 $\Omega$cm and H$\sub$k/ of about 25 Oe. Also, the corrosion resistance of (Co$\sub$22.2/Ni$\sub$27.6/Fe$\sub$50.2/)$\sub$100-x/N$\sub$x/ were improved with the increase in N concentration.

  • PDF

A Study on Nitric Oxide Formation & Reduction in Industrial Burner (I) -NO Concetration-Distribution in Double Swirling Diffusion Flame by LIF- (산업용 고부하버너 연소에서의 $NO_x$ 형성 및 저감에 관한 연구(I)-레이저 유도 형광법(LIF)를 이용한 이중선회 확산화염의 NO 농도 분포 측정-)

  • 박경석;김경수
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.379-386
    • /
    • 2001
  • This experimental study deals with on Nitric Oxide Formation & Reduction in Industrial Bunner. In this study, Laser-induced fluorescence (LIF) techniques have been used for quantitative measurements of Nitric Oxide. The NO A-X (0, 0) Vibrational band around 226 nm was excited using a XeCl excimer-pumped dye laser. And on-line excitation used $P_{21}+Q_1(14.5)/R_{12}+Q_2(20.5)/P_1(23.5)$ transition, for minimizing the other interferential effect. The measurements were taken NO concentration distribution in double swirling diffusion flame. In this swirl burner, NO concentration in downstream fo the flame decrease as primary/secondary air ratio increases.

  • PDF

Thermolelectric Properties of p-type $Sb_{2-x}Bi_xTe_3$ grown by MOCVD (MOCVD법으로 성장된 p-형 $Sb_{2-x}Bi_xTe_3$ 박막의 열전특성)

  • Kim, Jeong-Hoon;Kwon, Sung-Do;Jung, Yong-Chul;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.138-139
    • /
    • 2006
  • Metal organic chemical vapor deposition has been investigated for growth of $Sb_{2-x}Bi_xTe_3$ films on (001) GaAs substrates using diisopropyltelluride, triethylantimony and trimethylbismuth as metal organic sources. The thermoelectric properties were measured at room temperature and include Seebeck coefficient, electrical conductivity and Hall effect. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's composition ratio and deposition temperature. The thermoelectric Power factor($={\alpha}^2{\sigma}$) was calculated from theses properties. The best Power factor was $2.6\;{\times}\;10^{-3}W/mK^2$, given by grown $Sb_{1.6}Bi_{0.4}Te_3$ at $450^{\circ}C$. These materials could potentially be incorporated into advanced thermoelectric unicouples for a variety of power generation applications.

  • PDF

Study on Characteristics and Preparation of Binderless BaX Granules for Separation of p-Xylene (파라자일렌 분리용 Binderless BaX 성형체의 합성 및 반응 특성에 관한 연구)

  • Jin, Jung-Hyun;Suh, Jeong-Kwon;Hong, Ji-Sook;Kim, Beum-Sik;Lee, Chang-Ha
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • In this study, binderless zeolite BaX granule, an effective adsorbent for the separation of p-xylene was made. This adsorbent which has a sufficient strength, high specific surface area and selectivity to p-xylene was prepared by various steps, such as granulation process, calcination, binderless treatment, ion-exchange, and activation. In the granulation, the concentration of colloidal silica solution was controlled in order to confirm the effect of $SiO_2$ contents after binderless treatment. As a result, we confirmed that the compressive strength of granule after binderless treatment was increasing with increasing proportion of $SiO_2$ in the granule. And then Na-ion in granule was exchanged with Ba-ion by successive batch ion-exchange process. And then prepared adsorbents were tested for p-xylene separation by batch adsorption at $90^{\circ}C$. As a results of batch adsortion test, we confirmed that prepared adsorbents have a high selectivity to p-xylene. Also, it could be conformed that the prepared binderless zeolite BaX has a sufficient compressive strength (0.450 kgf), high specific surface area $(647.57m^2/g)$, high crystallinity (98.5% compared with zeolite NaX powder), and selectivity to p-xylene.

The intermediate solution of quasilinear elliptic boundary value problems

  • Ko, Bong-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.401-416
    • /
    • 1994
  • We study the existence of an intermediate solution of nonlinear elliptic boundary value problems (BVP) of the form $$ (BVP) {\Delta u = f(x,u,\Delta u), in \Omega {Bu(x) = \phi(x), on \partial\Omega, $$ where $\Omega$ is a smooth bounded domain in $R^n, n \geq 1, and \partial\Omega \in C^{2,\alpha}, (0 < \alpha < 1), \Delta$ is the Laplacian operator, $\nabla u = (D_1u, D_2u, \cdots, D_nu)$ denotes the gradient of u and $$ Bu(x) = p(x)u(x) + q(x)\frac{d\nu}{du} (x), $$ where $\frac{d\nu}{du} denotes the outward normal derivative of u on $\partial\Omega$.

  • PDF

STUDIES ON THE NUTRIENT REQUIREMENTS OF KOREAN NATIVE CATTLE I. EFFECT OF ENERGY LEVELS ON PERFORMANCE AND ENERGY INTAKE OF GROWING AND FINISHING KOREAN NATIVE CATTLE

  • Ahn, B.H.;Ahn, D.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.2
    • /
    • pp.59-66
    • /
    • 1989
  • Growing and finishing Korean native bulls were used to investigate the effects of different dietary energy levels on performance and energy intake. Experimental observations were made over three weight categories (200 to 250 kg, 250 to 350 kg and 350 to 450 kg). Three diets (2.4, 2.6 and 2.8 Mcal ME/kg DM) were used for each weight category. Crude protein levels of the diets were 12, 11 and 10% for the respective weight groups. Dietary energy level did not significantly affect daily body gain within a weight range but daily body gain during the entire experiment was higher (P<.05) in bulls receiving 2.6 Mcal energy diet than in those fed 2.4 and 2.8 Mcal energy diets. The following equation was developed to predict daily body gain(Y) from energy levels(X) of ration. $Y\;=\;1.3.475X\;-\;2.5949X^{2}\;-\;16.355$ Increasing energy levels significantly (P<.05) decreased daily feed intake. The following equation was developed to predict daily feed intake(Y) from energy levels(X) of ration. $Y\;=\;-30.013X\;+\;5.4401X^{2}\;+\;49.119$ Feed intake per metabolic body size during the entire feeding period ranged from 100.9 to 110.8 g and was lower in bulls fed 2.6 and 2.8 Mcal energy diets than in those fed 2.4 Mcal energy diet. Increasing energy levels significantly (P<.05) improved feed efficiency. The following equation was developed to predict feed efficiency(Y) from energy levels(X) of ration. $Y\;=\;-118.34X\;+\;22.448X^{2}\;+\;162.85$ Daily energy intake during the entire experiment ranged from 18.90 to 19.99 Mcal and there was no significant difference among energy levels. Daily energy intake per metabolic body size during the feeding period ranged from 248.6 to 260.8 kcal and was slightly higher in bulls receiving 2.8 Mcal than in those fed 2.4 and 2.6 Mcal energy diets. Energy required per kg body gain ranged from 17.25 to 19.11 Mcal and was slightly lower in bulls receiving 2.6 Mcal energy diet than in those fed 2.4 and 2.8 Mcal energy diets.

X-ray Rocking Curve Analysis of Post-Annealed 3 MeV P+ Implanted Silicon (3MeV P+ 이온주입된 실리콘의 열처리에 따른 X-ray Rocking Curve 분석)

  • 조남훈;장기완;김창수;이정용;노재상
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.1
    • /
    • pp.109-117
    • /
    • 1995
  • 고에너지 이온주입시 격자결함의 생성 및 열처리 거동이 double crystal X-ray와 단면 TEM을 사용하여 연구되었다. 3MeV P+ 이온주입한 실리콘의 DCXRD 분석 결과조사량 증가에 따라 모재 내의 변형량은 증가하였다. HRTEM 분석 결과 고에너지 이온주입시 결함은 표면 부근에 희박하고 Rp 부근에 집중되어 있었다. 또한 이온주입 상태의 결함층은 dark band의 형태로 존재하였으며 열처리시 이차결함은 이곳으로부터 생성됨이 관찰되었다. 3MeV P+,$1X1015extrm{cm}^2$의 조건으로 이온주입된 실리콘 시편의 열처리에 따른 X-ray rocking curve 분석을 통하여 열처리 온도가 $550^{\circ}C$에서 $700^{\circ}C$로 증가함에 따라 모재 내부의 최대 변형량이 7X10-4에서 2.9X10-4으로 감소함이 관찰되었다. 특히 $550^{\circ}C$ 열처리한 시편의 경우 표면으로부터$-1.5mu$m 영역에 작은 변형층이 넓게 잔존하였으며 열처리온도를 $700^{\circ}C$로 증가한 경우 제거되었다. 이온주입시 생성된 일차결함들은 $700^{\circ}C$ 열처리시 $60^{\circ}$ 전위와 <112> 막대 모양 결함, $1000^{\circ}C$ 열처리시 <110>방향의 전위루프로 열처리 조건에 따라 여러 가지 모양의 이차결함으로 변화하였다. 고에너지 이온주입에 의해 발생한 이차결함은 고온에서도 안정하여 고온 열처리에 의한 제거가 용이하지 않았다.

  • PDF

${H^1}({\Omega})$-NORM ERROR ANALYSIS UNDER NUMERICAL QUADRATURE RULES BY THE P-VERSION OF THE FINITE ELEMENT METHOD

  • Kim, Ik-Sung;Kim, Chang-Geun;Song, Man-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.467-489
    • /
    • 1994
  • Let $\Omega$ be a closed and bounded polygonal domain in R$^2$, or a closed line segment in R$^1$ with boundary $\Gamma$, such that there exists an invertible mapping T : $\Omega$ \longrightarrow $\Omega$ with the following correspondence: x$\in$$\Omega$ ↔ x = T(x) $\in$$\Omega$, (1.1) and (1.2) t $\in$ U$\sub$p/($\Omega$) ↔ t = to T$\^$-1/ $\in$ U$\sub$p/($\Omega$), where $\Omega$ denotes the corresponding reference elements I = [-1,1] and I ${\times}$ I in R$^1$ and R$^2$ respectively, (1.3) U$\sub$p/($\Omega$) = {t : t is a polynomial of degree $\leq$ p in each variable on $\Omega$}, and (1.4) U$\sub$p/($\Omega$) = {t : t = to T $\in$ U$\sub$p/($\Omega$)}.(omitted)

  • PDF