• Title/Summary/Keyword: $O_3$ sensitivity

Search Result 694, Processing Time 0.028 seconds

Ultra-sensitive Determination of Salinomycin in Serum Using ICP-MS with Nanoparticles

  • Cho, H.K.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3195-3198
    • /
    • 2014
  • An ultra-sensitive detection method for small molecules such as antibiotics was developed using ICP-MS with magnetic and $TiO_2$ nanoparticles. Since most of the antibiotics are too small to employ a sandwich-type extraction through an immunoreaction, a non-specific platform was employed, in which the target was extracted by magnetic separation, followed by tagging with $TiO_2$ nanoparticles of 11.2 nm for ICP-MS measurement. The detection limit for salinomycin obtained from spiked serum samples was $0.4ag\;mL^{-1}$ (${\pm}10.3%$), which was about $1.5{\times}10^6$ times lower than that of LC-MS/MS and about $1.2{\times}10^{11}$ times better than that of ELISA. Such an excellent sensitivity enabled us to study the toxicity of antibiotics exposed to human beings by determining them in serum.

Characteristic Analysis of Tropospheric Ozone Sensitivity from the Satellite-Based HCHO/NO2 Ratio in South Korea (위성 기반 HCHO/NO2 비율을 통한 국내 대류권 오존 민감도 특성 분석)

  • Jinah Jang;Yun Gon Lee ;Jeong-Ah Yu;Kyoung-Hee Sung;Sang-Min Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.563-576
    • /
    • 2023
  • In this study nitrogen dioxide (NO2), formaldehyde (HCHO) from the Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI), OMI/ Microwave Limb Sounder (MLS) tropospheric column ozone (TCO), and Airkorea ground-based O3 data were analyzed to examine the photochemical reaction relationship between tropospheric ozone and its precursors nitrogen oxides (NOx) and volatile organic compounds (VOCs). As a result of analyzing the trend of long-term changes from 2006 to 2020 using OMI satellite data, TCO showed an increasing trend, NO2 steadily decreased, and HCHO continued to increase in Northeast Asia. In addition, formaldehyde nitrogen dioxide ratio (FNR; HCHO/NO2 ratio), an indicator of ozone sensitivity, is gradually increasing, which means that the VOC-limited regime is decreasing. This study conducted a sensitivity analysis of ozone generation using TROPOMI FNR and ground-based ozone (O3) over the recent years (2019~2022) to identify the possible cause for the continuous increase of ozone in Korea. Similar to the previous studies, VOC-limited and transitional regimes appeared in megacities, and VOC-limited regimes also appeared in areas where major power plants were located. In VOC-limited regimes, in other words, areas where NOx is excessively saturated, the reduction in NOx emissions may have weakened the ozone titration and thus led to the increase of ozone. Therefore, VOC emissions should be reduced in the short term rather than NOx emissions to reduce ozone concentrations under the VOC-limited regime.

Electrochemical determination of chloramphenicol using a glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles

  • Giribabu, Krishnan;Jang, Sung-Chan;Haldorai, Yuvaraj;Rethinasabapathy, Muruganantham;Oh, Seo Yeong;Rengaraj, Arunkumar;Han, Young-Kyu;Cho, Wan-Seob;Roh, Changhyun;Huh, Yun Suk
    • Carbon letters
    • /
    • v.23
    • /
    • pp.38-47
    • /
    • 2017
  • In this study, magnetite ($Fe_3O_4$) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like $Fe_3O_4$ nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The $Fe_3O_4/GCE$ was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the $Fe_3O_4/GCE$ was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the $Fe_3O_4/GCE$. The electrocatalytic ability of $Fe_3O_4$ was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the $Fe_3O_4/GCE$ exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of $0.09-47{\mu}M$ with a correlation coefficient of 0.9919 and a limit of detection of $0.09{\mu}M$ (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.

Synthesis and 3D-QSARs Analyses of Herbicidal O,O-Dialkyl-1-phenoxyacetoxy-1-methylphosphonate Analogues as a New Class of Potent Inhibitors of Pyruvate Dehydrogenase

  • Soung, Min-Gyu;Hwang, Tae-Yeon;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1361-1367
    • /
    • 2010
  • A series of O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonate analogues (1~22) as a new class of potent inhibitors of pyruvate dehydrogenase were synthesized and 3D-QSARs (three dimensional qantitative structure-activity relationships) models on the pre-emergency herbicidal activity against the seed of cucumber (Cucumus Sativa L.) were derived and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indeces analysis (CoMSIA) methods. The statistical values of CoMSIA models were better predictability and fitness than those of CoMFA models. The inhibitory activities according to the optimized CoMSIA model I were dependent on the electrostatic field (41.4%), the H-bond acceptor field (26.0%), the hydrophobic field (20.8%) and the steric field (11.7%). And also, it was found that the optimized CoMSIA model I with the sensitivity to the perturbation ($d_q{^{2'}}/dr^2{_{yy'}}$ = 0.830) and the prediction ($q^2$ = 0.503) produced by a progressive scrambling analyses were not dependent on chance correlation. From the results of graphical analyses on the contour maps with the optimized CoMSIA model I, it is expected that the structural distinctions and descriptors that subscribe to herbicidal activities will be able to apply new an herbicide design.

Simulation and Sensitivity Analysis of the Air Separation Unit for SNG Production Relative to Air Boosting Ratios (SNG 생산용 공기분리공정의 공기 재 압축비에 따른 민감도 분석)

  • Kim, Mi-yeong;Joo, Yong-Jin;Seo, Dong Kyun;Shin, Jugon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2019
  • Cryogenic air separation unit produces various gases such as $N_2$, $O_2$, and Ar by liquefying air. The process also varies with diverse production conditions. The one for SNG production among them has lower efficiency compared to other air separation unit because it requires ultrapure $O_2$ with purity not lower than 99.5%. Among factors that reduce the efficiency of air separation unit, power consumption due to compress air and heat duty of double column were representatives. In this study, simulation of the air separation unit for SNG production was carry out by using ASEPN PLUS. In the results of the simulation, 18.21 kg/s of at least 99.5% pure $O_2$ was produced and 33.26 MW of power was consumed. To improve the energy efficiency of air separation unit for SNG production, the sensitivity analysis for power consumption, purities and flow rate of $N_2$, $O_2$ production in the air separation unit was performed by change of air boosting ratios. The simulated model has three types of air with different pressure levels and two air boosting ratio. The air boosting ratio means flow rate ratio of air by recompressing in the process. As increasing the first air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over increase and $O_2$ flow rate and purity decrease. As increasing the second air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over decreases and $O_2$ flow rate increases but the purity of $O_2$ decreases. In addition, power consumption of compressing to increase in the two cases but results of heat duty in double column were different. The heat duty in double column decreases as increasing the first air boosting ratio but increases as increasing the second air boosting ratio. According to the results of the sensitivity analysis, the optimum air boosting ratios were 0.48 and 0.50 respectively and after adjusting the air boosting ratios, power consumption decreased by approximately 7% from $0.51kWh/O_2kg$ to $0.47kWh/O_2kg$.

Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application (육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

Effect of Substrate Temperature and Post-Annealing on Structural and Electrical Properties of ZnO Thin Films for Gas Sensor Applications

  • Do, Gang-Min;Kim, Ji-Hong;No, Ji-Hyeong;Lee, Gyeong-Ju;Mun, Seong-Jun;Kim, Jae-Won;Park, Jae-Ho;Jo, Seul-Gi;Sin, Ju-Hong;Yeo, In-Hyeong;Mun, Byeong-Mu;Gu, Sang-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.105-105
    • /
    • 2011
  • ZnO is a promising material since it could be applied to many fields such as solar cells, laser diodes, thin films transistors and gas sensors. ZnO has a wide and direct band gap for about 3.37 eV at room temperature and a high exciton binding energy of 60 meV. In particular, ZnO features high sensitivity to toxic and combustible gas such as CO, NOX, so on. The development of gas sensors to monitor the toxic and combustible gases is imperative due to the concerns for enviromental pollution and the safety requirements for the industry. In this study, we investigated the effect of substrate temperature and post-annealing on structural and electrical properties of ZnO thin films. ZnO thin films were deposited by pulsed laser deposition (PLD) at various temperatures at from room temperature to $600^{\circ}C$. After that, post-annealing were performed at $600^{\circ}C$. To inspect the structural properties of the deposited ZnO thin films, X-ray diffraction (XRD) was carried out. For gas sensors, the morphology of the films is dominant factor since it is deeply related with the film surface area. Therefore, the atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM) were used to observe the surface of the ZnO thin films. Furthermore, we analyzed the electrical properties by using a Hall measurement system.

  • PDF

Characterization and Photocatalytic effect of ZnO nanoparticles synthesized by spray-pyrolysis method

  • Lee, Sang-Duck;Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Kang-Suk;Kim, Young-Dok;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.101-101
    • /
    • 2010
  • ZnO shows a direct band gap of 3.37eV, large exciton binding energy (~60 meV), high oxidation ability, high sensitivity to many gases, and low cost, and it has been used in various applications such as transparent electrodes, light emitting diodes (LEDs), gas sensors and photocatalysts. Among these applications ZnO as photocatalyst has considerably attracted attention over the past few years because of its high activities in removing organic contaminants generated from industrial activities. In this research, ZnO nanoparticles were synthesized by spray-pyrolysis method using the zinc acetate dihydrate as starting material at synthesis temperature of $900^{\circ}C$ with concentration varied from 0.01 to 1.0M. The physical and chemical properties of the synthesized ZnO nanoparticles were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transformation Infrared (FT-IR), and UV-vis spectroscopy. The Miller indices of XRD patterns indicate that the synthesized ZnO nanoparticles showed a hexagonal wurtzite structure. With increased precursor concentration, a primary, secondary particle sizes of ZnO nanoparticles increased by 0.8 to $1.5{\mu}m$ and 15 to 35nm, and their crystallinity was improved. Methyleneblue (MB) solution ($1{\mu}M$) as a test comtaminant was prepared for evaluating the photocatalytic activities of ZnO nanoparticles synthesized in different precursor concentration. The results show that the photocatalytic efficiency of ZnO nanoparticles was gradually enhanced by increased precursor concentration.

  • PDF

Design of ceramics powder compaction process parameters (Part Ⅰ : Finite element analysis) (세라믹스 분말 가압 성형 공정 변수 설계(1부: 유한요소 해석))

  • Jung S. C.;Keum Y. T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • In order to simulate the powder compaction process and to assess the effects of packing randomness and particle arrangement 2-dimensional model of rod array compaction using quasi-random multiparticle array is introduced. The elastic modulus of porous ceramics is computed by the homogenization method. With 3 Al₂O₃ and 3 Al particles the compaction processes associated with the porosities are simulated by the explicit finite element method, based on the elastic modulus found by the homogenization method. The simulation results are compared with both previous analytical ones and experimental measurements. Finally, in order to find the relationship between the friction coefficient of powder particles and the relative density, the sensitivity analysis is performed.

Development of novel strain sensor using surface acoustic wave (새로운 표면탄성파를 이용한 변형률 센서 개발)

  • Oh, Hae-Kwan;Hwang, U-Jin;Eun, Kyung-Tae;Choa, Sung-Hun;Lee, Kee-Keun;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.594-599
    • /
    • 2011
  • A SAW strain sensor based on Shear Horizontal wave with an 92 MHz central frequency was developed. It consists of SAW sensor, PCB substrate and bonding material (Loctite 401). External force applied to PCB substrate bonded to a piezoelectric substrate induces strain at the substrate surface, which causes changes in the elastic constant and density of the substrate and hence the propagation velocity of the SAW. The change in the velocity of the SAW result in a frequency shift of the sensor and by measuring a frequency shift, we can extract the strain induced by the external force. The $41^{\circ}$ YX $LiNbO_3$ was used because it has a Leaky shear horizontal(SH) wave propagation mode and a high electromechanical coupling coefficient ($K^2$=17.2%). And to compare with Rayleigh wave mode, $128^{\circ}$ YX $LiNbO_3$ was used. And to make a stable and low insert loss, Split IDT structure was used. The obtained sensitivity and linearity of the SAW strain sensor in the case of Split IDT were measured to be 17.2 kHz / % and 0.99, respectively.