• Title/Summary/Keyword: $NiO/Fe_3O_4$

Search Result 385, Processing Time 0.029 seconds

Corrosion Behavior of Ni 200 and Ni-base Alloys in Hot Lithium Molten salt (고온 리튬용융염에서 Ni 200 및 Ni-base 합금의 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Yun Ki-Seok;Park Seung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.251-259
    • /
    • 2004
  • In the development of the advanced spent fuel management process based on the molten salt technology, it is essential to choose the optimum material for the process equipment handling molten salt. Corrosion behavior of Ni 200 and Ni-base alloys in molten salt of LiCl-$Li_2$O under oxidation atmosphere was investigated in the temperature range of $650~800^{\circ}C$ for 24~312 hrs. The order of corrosion rate was Ni 200 > Inconel 690 > Inconel 601 > Inconel 600. Inconel 600 alloy showed the highest corrosion resistance among the examined alloys, but Ni 200 exhibited the highest corrosion rate. Corrosion products of Inconel 600 and Inconel 601 were $Cr_2$$O_3$ and $NiFe_2$$O_4$. In case of Inconel 690, a single layer of $CrO_2$$O_3$ was formed in the early stage of corrosion and an outer layer of $NiFe_2$O$_4$ and inner layer of $Cr_2$$O_3$ were formed with increase of corrosion time. Inconel 600 showed local corrosion behavior and Inconel 601, 690 showed uniform corrosion behavior.

The Properties of the Several Metal Oxides in the Water-splitting for H2 Production (물 분해 수소제조를 위한 금속산화물들의 반응특성)

  • Son, Hyun-Myung;Park, Chu-Sik;Lee, Sang-Ho;Hwang, Gab-Jin;Kim, Jong-Won;Lee, Jin-Bae
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.268-275
    • /
    • 2003
  • The water-splitting process by the metal oxides using solar heat is one of the hydrogen production method. The hydrogen production process using the metal oxides (NiFe2O4/NiAl2O4,CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite) was carried out by two steps. The first step was carried out by the CH4-reduction to increase activation of metal oxides at operation temperature. And then, it was carried out the water-splitting reaction using the water at operation temperature for the second step. Hydrogen was produced in this step. The production rates of H2 were 110, 160, 72, 29, 17, $21m{\ell}/hr{\cdot}g-_{Metal\;Oxide}$ for NiFe2O4/NiAl2O4, CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite respectively in the second step. CoFe2O4/CoAl2O4 had higher H2 production rate than the other metal oxides.

Superparamagnetic Properties off Zn0.5Ni0.5Fe2O4 Nanoparticles (나노입자 Zn0.5Ni0.5Fe2O4 초상자성 성질 연구)

  • Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.40-44
    • /
    • 2006
  • [ $Zn_{0.5}Ni_{0.5}Fe_2O_4$ ] nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by XRD, SEM, and Mossbauer spectroscopy, VSM. $Zn_{0.5}Ni_{0.5}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ has spinel structure and behaved superparamagnetically at room temperature. The estimated size of superparammagnetic $Zn_{0.5}Ni_{0.5}Fe_2O_4$ nanoparticle is around 7 nm. The hyperfine fields of the A and I patterns at 4.2 K were found to be 510 and 475 kOe, respectively. The blocking temperature $(T_B)$ of superparammagnetic $Zn_{0.5}Ni_{0.5}Fe_2O_4$ nanoparticle is about 90 K. The magnetic anisotropy constant and relaxation time constant of $Zn_{0.5}Ni_{0.5}Fe_2O_4$ nanoparticle were calculated to be $K=1.6\times10^6erg/cm^3$.

Energy Harvesting from the Bimorph Actuator using $Fe_2O_3$ Added $Pb(Ni_{1/3}Nb_{2/3})O_3$ - $PbTiO_3$ - $PbZrO_3$ Ceramics ($Fe_2O_3$가 첨가된 $Pb(Ni_{1/3}Nb_{2/3})O_3$ - $PbTiO_3$ - $PbZrO_3$ 세라믹의 바이몰프 액츄에이터를 이용한 에너지 하베스팅)

  • Jeong, Young-Hun;Kim, Chang-Il;Lee, Young-Jin;Paik, Jong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.330-330
    • /
    • 2008
  • $Fe_2O_3$ added Pb$(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3 $ (PNN-PT-PZ) ceramics were produced in order to use them as a bimoph acturator for energy harvesting. Especially, the 0.25 wt% $Fe_2O_3$ added 0.4PNN-0.357PT-0.243PZ, having the composition of morphotropic phase boundary, showed good piezoelectric properties of $d_{33}$ of 810 pC/N, $k_p$ of 77% and $Q_m$ of 55 along with a high Curie temperature of $210^{\circ}C$. A bimorph actuator, composed of the two piezoelectric layers bonded together with a phosphorous bronze layer as a central metallic electrode, was successfully fabricated. The bimorph actuator, vibrated with a 1.3 mm amplitude at 68 Hz, produced high electric power of approximately 60 mW.

  • PDF

Highly Ordered Mesoporous Metal Oxides as Catalysts for Dehydrogenation of Cyclohexanol (메조기공을 갖는 다양한 금속 산화물 촉매를 이용한 사이클로헥사놀의 탈수소화 반응)

  • Lee, Eunok;Jin, Mingshi;Kim, Ji Man
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.518-522
    • /
    • 2013
  • Cyclohexanone is important intermediate for the manufacture of caprolactam which is monomer of nylron. Cyclohexanone is generally produced by dehydrogenation reaction of cyclohexanol. In this study, highly mesoporous metal oxides such as meso-$WO_3$, meso-$TiO_2$, meso-$Fe_2O_3$, meso-CuO, meso-$SnO_2$ and meso-NiO were synthesized using mesoporous silica KIT-6 as a hard template via nano-replication method for dehydrogenation of cyclohexanol. The overall conversion of cyclohexanol followed a general order: meso-$WO_3$ >> meso-$Fe_2O_3$ > meso-$SnO_2$ > meso-$TiO_2$ > meso-NiO > meso-CuO. In particular, meso-$WO_3$ significantly showed higher activity than the other mesoporous metal oxides. Therefore, the meso-$WO_3$ has wide range of application possibilities for dehydrogenation of cyclohexanol.

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

  • Kwon, Woo-Hyun;Kang, Jeoung-Yun;Lee, Jae-Gwang;Lee, Seung-Wha;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.159-164
    • /
    • 2010
  • The Zn, Co and Ni substituted manganese ferrite powders, $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$, were fabricated by the solgel method, and their crystallographic and magnetic properties were studied. The Zn substituted manganese ferrite, $Zn_{0.2}Mn_{0.8}Fe_2O_4$, had a single spinel structure above $400^{\circ}C$, and the size of the particles of the ferrite powder increased when the annealing temperature was increased. Above $500^{\circ}C$, all the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ ferrite had a single spinel structure and the lattice constants decreased with an increasing substitution of Zn, Co, and Ni in $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$. The Mossbauer spectra of $Mn_{1-x}Zn_xFe_2O_4$ (0.0$\leq$x$\leq$0.4) could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. For x = 0.6 and 0.8 they showed two Zeeman sextets and a single quadrupole doublet, which indicated they were ferrimagnetic and paramagnetic. And for x = 1.0 spectrum showed a doublet due to a paramagnetic phase. For the Co and Ni substituted manganese ferrite powders, all the Mossbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The variation of the Mossbauer parameters are also discussed with substituted Zn, Co and Ni ions. The increment of the saturation magnetization up to x = 0.6 in $Mn_{1-x}Co_xFe_2O_4$ could be qualitatively explained using the site distribution and the spin magnetic moment of substituted ions. The saturation magnetization and coercivity of the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ (x = 0.4) ferrite powders were also compared with pure $MnFe_2O_4$.

A Study on Magnetic Properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}(0{\leq}x{\leq}1)$ Ferrrite ($Ni_{1-x}Zn_{x}Fe_{2}O_{4}(0{\leq}x{\leq}1)$ Ferrrite의 자기적 성질 연구)

  • 조익한;양재석;김응찬;강신규
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.397-404
    • /
    • 1996
  • The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ have been studied by X-ray diffractometry and $M\"{o}ssbauer$ Spectroscopy at room temperature. The X-ray diffraction study show that spinel structure is formed in all x, lattice constants linearly increased from $8.3111{$\AA$}~8.4184{$\AA$}({\pm}0.0003)$ with increasing x from 0 to 1, and oxygen parameter increase with increasing x. $M\"{o}ssbauer$ spectrum shows that $Ni_{1-x}Zn_{x}Fe_{2}O_{4}(x=0)$ has two antiparallel magnetic structure due to $Fe^{3+}$ octahedral site and $Fe^{3+}$ tetrahedral site. $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ with $0.2{\leq}x{\leq}0.6$ has magnetic structure of Yafet and Kittel, in particularly, specimen with x=0.6 shows relaxation effect. Specimen with $x{\geq}0.8$ show paramagnetic quadrupole splitting. The isomer shift is independent of x, but quadrupole splittings decrease with increasing x in the range of $0.8{\leq}x{\leq}1$, and nuclear magnetic fields decrease with in¬creasing x in the range of $0{\leq}x{\leq}0.6$. The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ change from ferrimagnetics to pararnagnetics with increasing x.

  • PDF

Tunneling Magnetoresistance of a Ramp-edge Type Junction With Si3N4 Barrier (Si3N4장벽층을 이용한 경사형 모서리 접합의 터널링 자기저항 특성)

  • Kim, Young-Ii;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.201-205
    • /
    • 2002
  • The tunneling magnetoresistance (TMR) of a ramp-edge type junction has been studied. The samples with a structure of NiO(60)/Co(10)/NiO(60)/Si$_3$N$_4$(2-6)/NiFe(10) (nm) were prepared by the sputtering and etched by the electron cyclotron (ECR) argon ion milling. Nonlinear I-V characteristics was obtained from a ramp-type tunneling junctions having the dominant difference between zero and +90 Oe perpendicular to the junction edge line. The voltage dependence of TMR was stable up to a bias volt of $\pm$10 V with a TMR ratio of about -10%, which may be very peculiar magnetic tunneling properties with asymmetric tunneling process between wedge Co pinned layer and NiFe free layer.

Electrochemical Properties and Thermal Stability of LiNi0.8Co0.15 Al0.05O2-LiFePO4 Mixed Cathode Materials for Lithium Secondary Batteries

  • Kim, Hyun-Ju;Jin, Bong-Soo;Doh, Chil-Hoon;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • We prepared various $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-cathode electrodes by changing the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ and $LiFePO_4$ used, and we analyzed the electrochemical characteristics of the cathodes. We found that the reversible specific capacity of the cathodes increased and that the capacity retention ratios of the cathodes decreased during cycling as the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ increased. Conversely, we found that although the reversible specific capacity of the cathodes decreased because of the material composition, the cycle property of the cathodes increased when the $LiFePO_4$ content increased. We analyzed the thermal stability of the $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-material cathodes by differential scanning calorimetry and found that it increased as the $LiFePO_4$ content increased.

Atmospheric Oxidation of Fe-16Cr-6Ni-6Mn-1.7Mo Stainless Steel between 700 and 900℃ (Fe-16Cr-6Ni-6Mn-1.7Mo 스테인리스 합금의 700~900℃에서의 대기중 산화)

  • Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.153-160
    • /
    • 2011
  • The AISI 216L stainless steel with a composition of Fe-16Cr-6Ni-6Mn-1.7Mo (wt.%) was oxidized at $700{\sim}900^{\circ}C$ in air for 100 h. At $700^{\circ}C$, a thin $Mn_{1.5}Cr_{1.5}O_4$ oxide layer with a thickness of $0.4{\mu}m$ formed. At $800^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $FeCr_2O_4$ oxide layer with a total thickness of $30{\mu}m$ formed. The non-adherent scale formed at $800^{\circ}C$ was susceptible to cracking. At $900^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $Mn_{1.5}Cr_{1.5}O_4$ oxide layer formed, whose total thickness was $10{\sim}15{\mu}m$. The scales formed at $900^{\circ}C$ were non-adherent and susceptible to cracking. 216 L stainless steel oxidized faster than 316 L stainless steel, owing to the increment of the Mn content and the decrement of Ni content.