• Title/Summary/Keyword: $NiO/Al_2O_3$ catalyst

Search Result 116, Processing Time 0.028 seconds

An experimental study on methanol decomposition catalysts for long distance-heat transportation (장거리 열수송을 위한 메탄올 분해 촉매에 대한 실험적 연구)

  • 문승현;박성룡;윤형기;윤기준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.334-342
    • /
    • 1998
  • In this experimental study, methanol was chosen as a system material for a long -distance heat transportation. Not only transition metals but also noble metals were investigated as an active component, and several metal oxides, such as ${\gamma}$-$Al_2$,$O_3$, $SiO_2$, etc. as a support. In general, transition metal catalysts absorbed more heat than noble metal catalysts. The amount of heat absorption and CO selectivity depends on temperature and methanol partial pressure, and 25$0^{\circ}C$ Ni/$SiO_2$ catalyst showed the best result for methanol decomposition reaction.

  • PDF

Solar $CO_2$ Reforming of Methane Using $Ni/{\gamma}-Al_2O_3/Metallic$ foam device ($Ni/{\gamma}-Al_2O_3/Metallic$ device를 이용한 고온 태양열 메탄-이산화탄소 개질반응)

  • Shin, Il-Yoong;Lee, Ju-Han;Lee, Jin-Gyu;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.275-281
    • /
    • 2011
  • Solar reforming of methane with $CO_2$ was successfully tested with a direct irradiated absorber on a parabolic dish capable of $5kW_{th}$ solar power. The new type of catalytically activated metallic foam absorber was prepared, and its activity was tested. Ni was applied as the active metal on the gamma - alumina coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically-activated ceramic foam absorber, this new metallic foam absorber is found to exhibit a superior reaction performance at the relatively low insolation or at low temperatures. In addition, unlike direct irradiation of the catalytically-activated ceramic foam absorber, metallic foam absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 2.1kW and the maximum $CH_4$ conversion was almost 40%.

  • PDF

Characteristics of Hydrogen Iodide Decomposition using Alumina-Supported Ni Based Catalyst (Ni 기반 촉매를 이용한 HI 분해 반응 특성)

  • KIM, JI HYE;PARK, CHU SIK;KIM, CHANG HEE;KANG, KYOUNG SOO;JEONG, SEONG UK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • HI decomposition reaction requires a catalyst for the efficient production of hydrogen as a key reaction for hydrogen production in sulfur-iodine thermochemical water-splitting (SI) cycle. As a catalyst used in the reaction, the performance of platinum catalyst is excellent. While, the platinum catalyst is not economical. Therefore, studies of a nickel catalyst that could replace platinum have been carried out. In this study, the characteristics of the catalytic HI decomposition on the amount of loaded nickel (Ni = 0.1, 0.5, 1, 3, 5, 10 wt%) were investigated. As the supported Ni amount increased up to 3 wt%, HI decomposition was found to increase in linear proportion. However, the conversion of $Ni/Al_2O_3$ catalyst loaded above 3 wt% was not linear. It was thought that the different HI decomposition characteristics was caused in the size and metal dispersion of Ni particles of catalyst. The physical property of catalyst before and after HI decomposition reaction was characterized by BET, chemisorption, XRD and SEM analysis.

The Hydrodesulfurization over NiPtMo Catalysts and Acidic Characterization of Supports (NiPtMo계 촉매 담체의 산특성 및 수소첨가 탈황반응)

  • 김문찬;이원묵;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.281-288
    • /
    • 1994
  • The hydrodesulfurization (DBT) were Peformed over NiPtMo catalysts supported on HZSM-5, LaY and ${\gamma}$- $Al_2$O$_3$under high H$_2$ pressure. And the acidities of these catalysts were characterized by using TGA and DSC. The result showed that the order of the acid strength for prepared supports was HZSM -5>LaY>${\gamma}$- A1$_2$O$_3$. For the acid amount we obtained the same result for the acid strength The acid strength and the acid amount mainly depended on the kinds of supports whose acid site were strong or not The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The origin of acid site was Bronsted in NH50 and NY catalysts And it was Lewis in NA catalyst The order of desorption activation energy for Pyridine was NH50>NY>NA. And the result was the same for thiophene. The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The conversion of DBT over NA catalyst was higher than NH and NY catalysts.

  • PDF

Effect of Water Addition on Activity of Gold Catalysts Supported on Metal Oxide at Low Temperature CO Oxidation (일산화탄소 저온 산화에서 금속산화물에 담지된 금촉매의 활성에 미치는 수분첨가의 영향)

  • Ahn, Ho-Geun;Kim, Ki-Joong;Chung, Min-Chul
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.720-725
    • /
    • 2011
  • Gold catalysts supported on metal-oxides were prepared by co-precipitation using the various metal nitrates and chloroauric acid as precursors, and effect of water addition on the catalytic activity in CO oxidation was investigated. Among the various supported gold catalysts, Au/$Co_{3}O_{4}$ and Au/ZnO catalysts showed the excellent activity for CO oxidation. Water in the reactant gas had a negative effect on the oxidation activity over Au/$Co_{3}O_{4}$ catalysts and a positive effect on that over Au/ZnO, which means the activity depends strongly on the nature of support. It was also confirmed that no significant change in the particle size of gold was observed after reaction both in dry and wet conditions. This fact suggested that the deactivated catalyst due to a carbonate species could be regenerated by water addition in the reactant gas.

Preparation and Characterization of Ni-Co Bimetallic Catalyst for Methanation (메탄화 반응을 위한 Ni-Co 이원 금속 촉매의 제조와 특성 분석)

  • Yia, Jong-Heop;Kanga, Mi-Yeong;Kim, Woo-Young;Cho, Won-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.33-38
    • /
    • 2009
  • Synthetic natural gas was producd by the reaction of carbon monoxide and hydrogen via methanation. Ni-Co bimetallic catalyst supported on $Al_2O_3$ for methanation was prepared using deposition-precipitation method. For the comparison, Ni, Co monometallic catalyst was prepared using the same method. The prepared catalysts were characterized by TEM, XRD and TPR and applied to methanation reaction. The catalysts prepared using deposition-precipitation method showed the high metal dispersion. The activity of Ni-Co bimetallic catalyst was higher than that of Ni, Co monometallic catalyst. TPR measurements indicated that Ni-Co bimetallic catalyst had more active hydrogen species than Ni, Co monometallic catalyst due to the synergetic effect in the presence of Ni and Co.

  • PDF

Improvement of Durability Performance of Catalysts for a Catalytic Combustor (촉매 연소기용 촉매의 내구 성능 향상 연구)

  • Choi, Byugchul;Yu, Jin sang;Seo, Yong seok;Jung, Pilsoo
    • Journal of Institute of Convergence Technology
    • /
    • v.9 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • The aim of this study is to improve the durability performance of catalysts for a catalytic combustor and to obtain operating conditions for stable combustion of the catalytic combustor. It was attempted to improve the durability of the catalysts by adding a promoter in order to reduce the cost of replacing Pt catalyst while maintaining stability. The main catalyst used in the study was Pt and the promoters were Ni and La. Pure Pt3/γ-Al2O3 catalyst without promoter was promoted to fast sintering states under harsh conditions and catalytic combustion was turned off, whereas the catalysts added La, Ni as promoter were showed relatively slow sintering states. It can be concluded that the promoter La, Ni effectively contributes to the improvement of the durability of the Pt catalyst, and it is possible to get longer durability and more stable duration than the conventional catalytic combustor.

A Design Approach to $CrO_x/TiO_2$-based Catalysts for Gas-phase TCE Oxidation (기상 TCE 제거반응용 $CrO_x/TiO_2$계 복합 산화물 촉매 디자인)

  • Yang, Won-Ho;Kim, Moon-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-375
    • /
    • 2006
  • Single and complex metal oxide catalysts supported onto a commercial DT51D $TiO_2$ have been investigated for gas-phase TCE oxidation in a continuous flow type fixed-bed reaction system to develop a better design approach to catalysts for this reaction. Among the $TiO_2$-supported single metal oxides used, i.e., $CrO_x,\;FeO_x,\;MnO_x,\;LaO_x,\;CoO_x,\;NiO_x,\;CeO_x\;and\;CuO_x$, with the respective metal contents of 5 wt.%, the $CrO_x/TiO_2$ catalyst was shown to be most active for the oxidative TCE decomposition, depending significantly on amounts of $CrO_x\;on\;TiO_2$. The use of high $CrO_x$ loadings greater than 10 wt.% caused lower activity in the catalytic TCE oxidation, which is probably due to production of $Cr_2O_3$ crystallites on the surface of $TiO_2$. $CrO_x/TiO_2$-supported $CrO_x$-based bimetallic oxide catalysts were of particular interest in removal efficiency for this TCE oxidation reaction at reaction temperatures above $200^{\circ}C$, compared to that obtained with $CrO_x$-free complex metal oxides and a 10 wt.% $CrO_x/TiO_2$ catalyst. Catalytic activity of 5 wt.% $CrO_x-5$ wt.% $LaO_x$ in the removal reaction was similar to or slightly higher than that acquired for the $CrO_x$-only catalyst. Similar observation was revealed for 5 wt.% $CrO_x$-based bimetallic oxides consisting of either 5 wt.% $MnO_x,\;CoO_x,\;NiO_x\;or\;FeO_x$. These results represent that such $CrO_x$-based bimetallic systems for the catalytic TCE oxidation on significantly minimize the usage of $CrO_x$ that is well known to be one of very toxic heavy metals, and offer a very useful technique to design new type catalysts for reducing chlorinated volatile organic substances.

CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor (가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구)

  • Son, Seong Hye;Seo, Myung Won;Hwang, Byung Wook;Park, Sung Jin;Kim, Jung Hwan;Lee, Do Yeon;Go, Kang Seok;Jeon, Sang Goo;Yoon, Sung Min;Kim, Yong Ku;Kim, Jae Ho;Ryu, Ho Jeong;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.871-877
    • /
    • 2018
  • Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. $CO_2$ methanation is well known reaction that as a renewable energy storage system. $CO_2$ methanation requires a catalyst to be active at relatively low temperatures ($250-500^{\circ}C$) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with $Ni/{\gamma}-Al_2O_3$ (Ni70%, and ${\gamma}-Al_2O_3$30%) catalyst. The range of the reaction conditions were $H_2/CO_2$ mole ratio range of 4.0-6.0, temperature of $300-420^{\circ}C$, pressure of 1-9 bar, and gas velocity ($U_0/U_{mf}$) of 1-5. As the $H_2/CO_2$ mole ratio, temperature and pressure increased, $CO_2$ conversion increases at the experimental temperature range. However, $CO_2$ conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum $CO_2$ conversion of 99.6% was obtained with the operating condition as follows; $H_2/CO_2$ ratio of 5, temperature of $400^{\circ}C$, pressure of 9 bar, and $U_0/U_{mf}$ of 1.4-3.

Hydrogen production from the natural gas steam reforming over Ni-coated metal structured catalyst (Ni 촉매가 코팅된 금속 구조체를 적용한 천연가스 수증기 개질 반응에서의 수소 생산)

  • Choi, Eunjeong;Koo, KeeYoung;Jung, UnHo;Rhee, YoungWoo;Yoon, WangLai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.230.2-230.2
    • /
    • 2010
  • 천연가스 수증기 개질 반응에 사용되는 펠릿 촉매의 단점인 열 및 물질 전달 제한, 낮은 effectiveness factor, 압력강화와 channeling 등의 문제점을 해결 하고자 모노리스 형태의 금속 구조체 촉매를 본 연구에 적용 하였다. Fecralloy 재질의 금속 구조체에 Ni 촉매를 워시코팅 (wash coating) 하여 제조 하였으며, 이를 천연가스 수증기 개질 반응에 적용하여 수소를 생산하였다. 실험 조건으로는 S/C ratio를 3으로 고정하여 온도를 $600^{\circ}C{\sim}800^{\circ}C$로 변화 시켰으며, GHSV $3000{\sim}30000h^{-1}$에서 진행 되었다. 구조체 촉매 코팅에 사용된 Ni 촉매의 BET, TPR, H2-chemisorption, SEM, EDS의 특성분석을 수행 하였다. 온도별 테스트에서 모노리스 형태의 금속 구조체 촉매가 펠릿 형태의 촉매에 비해 우수한 열전달 효과로 인해 낮은 퍼니스 온도와 높은 반응 활성을 나타내었으며, GHSV 변화에 따른 성능평가 결과도 15wt% $Ni/MgAl_2O_4$펠릿 촉매와 비교하여 금속 구조체 촉매가 높은 활성을 보였다.

  • PDF