• Title/Summary/Keyword: $Nano-TiN_x$

Search Result 65, Processing Time 0.023 seconds

Fabrication and sintering of nano $TiN_x$ and its composites (Nano $TiN_x$와 그 복합체의 제조 및 소결)

  • Kim, Dong-Sik;Kim, Sung-Jin;Rahno, Khamidova;Park, Sung-Bum;Park, Seung-Sik;Lee, Hye-Jeong;Lee, Sang-Woo;Cho, Kyeong-Sik;Woo, Heung-Sik;Ahn, Joong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.101-105
    • /
    • 2006
  • We fabricated the nano $TiN_x$ by making of reaction between titanium powder and $Si_3N_4$ during planetary milling. The $TiN_x$ powder was sintered by spark plasma sintering machine after mixing with 50 wt% of titanium powder, and the sintered body was heat-treated at $850^{\circ}C$ in order to investigate its hardness property at the elevated temperature. We analyzed crystal structure by XRD. We observed the peaks of $TiN_{0.26}$ and TiN after 10 hours milling, and we observed TiN peak mainly after 20 hours milling. The reacted particle size distribution was investigated by FE-SEM. Increase of milling time, the size of reacted particles was decreased and the $10{\sim}20nm$ size of $TiN_x$ on the surface of titanium and $TiN_x$ was observed after 20 hours milling. The micro-Vickers hardness of mixed sintered body was about $1050kgf/mm^2$.

Structural and Electrical Properties High Resistance of TiNxOy/TiNx Multi-layer Thin Film Resistors (TiNxOy/TiNx 다층 박막을 이용한 고저항 박막 저항체의 구조 및 전기적 특성평가)

  • Park, Kyoung-Woo;Hur, Sung-Gi;Nguyen, Duy Cuong;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.591-596
    • /
    • 2009
  • $TiN_xO_y/TiN_x$ multi-layer thin films with a high resistance(${\sim}k{\Omega}$) were deposited on $SiO_2/Si$ substrates at room temperature by sputtering. The $TiN_x$ thin films show island and smooth surface morphology in samples prepared by ${\alpha}$ and RF magnetron sputtering, respectively. $TiN_xO_y/TiN_x$ multi-layer in has been developed to control temperature coefficient of resistance(TCR) by the incorporation of $TiN_x$ layer(positive TCR) inserted into $TiN_xO_y$ layers(negative TCR). Electrical and structural properties of sputtered $TiN_xO_y/TiN_x$ multi-layer films were investigated as a function of annealing temperature. In order to achieve a stable high resistivity, multi-layer films were annealed at various temperatures in oxygen ambient. Samples annealed at $700^{\circ}C$ for 1 min exhibited good TCR value of approximately $-54 ppm/^{\circ}C$ and a stable high resistivity around $20k{\Omega}/sq$. with good reversibility.

Characteristic and Electrical Properties of $TiN_xO_y/TiN_x$ Multilayer Thin Film Resistors with a High Resistance ($TiN_xO_y/TiN_x$다층 박막을 이용한 고저항 박막 저항체의 특성평가)

  • Park, Kyoung-Woo;Hur, Sung-Gi;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.19-19
    • /
    • 2009
  • TiNxOy/TiNx multilayer thin films with a high resistance (~ k$Omega$) were deposited on SiO2/Si substrates at room temperature by sputtering. The TiNx thin films show island and smooth surface morphology in samples prepared by dc and rf magnetron sputtering, respectively. TiNxOy/TiNx multilayer has been developed to control temperature coefficient of resistance (TCR) by the incorporation of TiNx layer (positive TCR) inserted into TiNxOy layers(negative TCR). Electrical and structural properties of sputtered TiNxOy/TiNx multilayer films were investigated as a function of annealing temperature. In order to achieve a stable high resistivity, multilayer films were annealed at various temperatures in oxygen ambient. Samples annealed at 700 oC for 1 min exhibit a good TCR value and a stable high resistivity.

  • PDF

The Characteristic of Titanium Composites Including of Nano-sized TiNx for Stack Separator

  • Park, Sung-Bum;Ban, Tae-Ho;Woo, Heung-Sik;Kim, Sung-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • The fabrication of interconnect from titanium powders and $TiN_x$ powders is investigated. Corrosion-resistant titanium and $TiN_x$ are used as reinforcement in order to reveal high heat and corrosion resistance at the elevated temperature. We fabricated the plates for interconnect reinforced with $TiN_x$ by mixing titanium powders with 10 wt.% of nano-sized $TiN_x$. Spark Plasma Sintering (SPS) was chosen for the sintering of these composites. The plate made of titanium powders and $TiN_x$ powders demonstrates higher corrosion resistance than that of the plate of titanium powders alone. The physical properties of specimens were analyzed by performing hardness test and biaxial strength test. The electrochemical properties, such as corrosion resistance and hydrogen permeability at high temperature, were also investigated. The microstructures of the specimens were investigated by FESEM and profiles of chemical compositions were analyzed by EDX.

Effects of TiN/Ti Multilayer Coating on the Ti-30Ta-xZr Alloy Surface (Ti-30Ta-xZr 합금의 표면에 TiN/Ti 다층막코팅효과)

  • Kim, Y.U.;Jeong, Y.H.;Cho, J.Y.;Choe, H.C.;Vang, M.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.161-168
    • /
    • 2009
  • Effects of TiN/Ti multilayer coating on the Ti-30Ta-xZr alloy surface were studied by using various experiments. The Ti-30Ta containing Zr (5, 10 and 15 wt%) were melted 10 times to improve chemical homogeneity by using a vacuum furnace. And then samples were homogenized for 24 hrs at $1000^{\circ}C$. The specimens were prepared for TiN/Ti coating by cutting and polishing. The prepared specimens were coated with TiN/Ti multilayers by using DC magnetron sputtering method. The analyses of coated surface and coated layer were carried out by field emission scanning electron microscope(FE-SEM), EDX, and X-ray diffractometer(XRD). From the microstructure and XRD analysis of Ti-30Ta-xZr alloys, The equiaxed structure was changed to needle-like structure with increasing Zr content. And $\alpha$-peak and elastic modulus increased as Zr content increased. The $\alpha$ and $\beta$ phase predominantly were found in the specimen containing high Zr content. According to the analysis of TiN/Ti coating layer, the surface defects and structures of Ti-30Ta-xZr were covered with TiN/Ti coating layer and surface roughness decreased.

Effects of HA/TiN Coating on the Electrochemical Characteristics of Ti-Ta-Zr Alloys (Ti-Ta-Zr합금의 전기화학적 특성에 미치는 HA/TiN 코팅의 영향)

  • Oh, Mi-Young;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.691-699
    • /
    • 2008
  • Electrochemical characteristics of Ti-30Ta-xZr alloys coated with HA/TiN by using magnetron sputtering method were studied. The Ti-30Ta containing Zr(3, 7, 10 and 15wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and coating, and then coated with HA/TiN, respectively, by using DC and RF-magnetron sputtering method. The analyses of coated surface and coated layer were carried out by using optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). The electrochemical characteristics were examined using potentiodynamic (-1,500 mV~ + 2,000 mV) and A.C. impedance spectroscopy(100 kHz ~ 10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructure of homogenized Ti-30Ta-xZr alloys showed needle-like structure. In case of homogenized Ti-30Ta-xZr alloys, a-peak was increased with increasing Zr content. The thickness of TiN and HA coated layer showed 400 nm and 100 nm, respectively. The corrosion resistance of HA/TiN-coated Ti-30Ta-xZr alloys were higher than that of the non-coated Ti-30TaxZr alloys, whic hindicate better protective effect. The polarization resistance($R_p$) value of HA/TiN coated Ti-30Ta-xZr alloys showed $8.40{\times}10^5{\Omega}cm^2$ which was higher than that of non-coated Ti-30Ta-xZr alloys.

Low Temperature Preparation and Photocatalytic Activity of TiO{2-x}Nx (TiO{2-x}Nx의 저온제조 및 광화학적 특성)

  • Jung, Dong-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.120-124
    • /
    • 2010
  • $TiO_2$ and N-substituted $TiO_{2-x}N_x$ were synthesized by using precipitation method. $TiO_{2-x}N_x$ compound absorbed whole UV light as well as long wavelength of visible light (400 - 700 nm) because of the change of band gap from 3.2 eV to 1.77 eV. Results obtained revealed that $TiO_{2-x}N_x$ showed higher activity than pure $TiO_2$ or P-25 for visible-photocatalytic degradation of 1,4-dichlorobenzene.

Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials (TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성)

  • Kim, Y.U.;Cho, J.Y.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

The Study of Color and Hardness of TiN Thin Film by UBM Sputtering System (UBM Sputtering System에 의한 TiN막의 색상과 경도에 관한 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The color and hardness of deposited TiN films was investigated. Methods: The cross sections of deposited films on silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS, the components of the inner parts of the films were observed by XPS depth profiling. XPS high resolution scans and curve fittings of deposited films were performed for quantitative chemical analysis, Vickers micro hardness measurements of deposited films were performed with a nano indenter equipment. Results: The colors of deposited films gradually changed from light gold to dark gold, light violet, and indigo color with increasing of the thickness. It could be seen that the color change come from the composite change of three compound,$TiO_{x}N_{y}$, $TiO_2$, TiN. Especially, the composite change of$TiO_{x}N_{y}$ compound was thought to affect the color change with respect to thickness. Conclusions: Deposited films had lower than the value of general TiN film in Vickers hardness, which was caused by mixing three TiN, $TiO_2$,$TiO_{x}N_{y}$ compound in the deposited films. The increasing and decreasing of micro hardness with respect to thickness was thought to have something to do with the composite of TiN in the films.

  • PDF

Synthesis of TiN/TiB2/Ti-silicides Nanocomposite Powders by Mechanochemical Reaction and its Reaction Mechanism (기계화학반응에 의한 TiN/TiB2/Ti-silicides 나노복합분말의 합성과 반응기구)

  • Cho Young-Whan;Kim Ji-Woo;Shim Jae-Hyeok;Ahn Jae-Pyoung;Oh Kyu-Hwan
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.273-278
    • /
    • 2005
  • Nanostructured TiN/$TiB_2$/$TiSi_2$ and TiN/$TiB_2$/$Ti_5Si_2$ composite powders have been prepared by mechanochemical reaction from mixtures of Ti, BN, and $Si_3N_4$ powders. The raw materials have reacted to form a uniform mixture of TiN, $TiB_2$ and $TiSi_2$ or $Ti_5Si_3$ depending on the amount of $Si_3N_4$ used in the starting mixtures, and the reaction proceeded through so-called mechanically activated self-sustaining reaction (MSR). Fine TiN and $TiB_2$ crystallites less than a few tens of nanometer were homogeneously dispersed in the amorphous $TiSi_2$ or $Ti_5Si_3$ matrix after milling for 12 hours. These amorphous matrices became crystalline phases after annealing at high temperatures as expected, but the original microstructure did not change significantly.