• Title/Summary/Keyword: $N_2O$저감

Search Result 117, Processing Time 0.024 seconds

Characterization of a Nitrous Oxide-reducing Bacterial Consortium (아산화질소 환원 세균 컨소시움의 특성)

  • Park, Hyung-Joo;Kwon, Ji-Hyeon;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.630-638
    • /
    • 2019
  • Nitrous oxide (N2O) is a greenhouse gas with a global warming potential 310 times higher than that of carbon dioxide. In this study, an N2O-reducing consortium was obtained by enrichment culture using advanced treatment sludge as the inoculum. The dominant bacteria in the consortium were Sulfurovum (17.95%), Geobacter (14.63%), Rectinema (11.45%), and Chlorobium (8.24%). The consortium displayed optimal N2O reducing activity when acetate was supplied as the carbon source at a carbon/nitrogen ratio (mol·mol-1) of 6.3. The N2O reduction rate increased with increasing N2O concentration at less than 3,000 ppm. Kinetic analysis revealed that the maximum N2O reduction rate of the consortium was 163.9 ㎍-N·g-VSS-1·h-1. Genes present in the consortium included nosZ (reduction of nitrous oxide to N2), narG (reduction of nitrate to nitrite), nirK (reduction of nitrite to nitric oxide), and norB (reduction of nitric oxide to nitrous oxide). These results indicate that the N2O-reducing consortium is a promising bioresource that can be used in denitrification and N2O mitigation.

Evaluation of N2O Emissions with Different Growing Periods (Spring and Autumn Seasons), Tillage and No Tillage Conditions in a Chinese Cabbage Field (배추의 재배시기와 경운 유.무에 따른 아산화질소 배출 평가)

  • Kim, Gun-Yeob;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1239-1244
    • /
    • 2011
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere. Nitrous oxide ($N_2O$) emission in upland fields were assessed in terms of emissions and their control at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city. It was evaluated $N_2O$ emissions with different growing periods (spring and autumn seasons), tillage and no tillage conditions in a chinese cabbage field. The results were as follows: 1) An amount of $N_2O$ emissions were high in the order of Swine manure compost>NPK>Hairy vetch+N fertilizer. By tillage and no tillage conditions, $N_2O$ emissions were reduced to 33.7~51.8% (spring season) and 31.4~76.7% (autumn season) in no-tillage than tillage conditions. 2) In autumn season than those spring season, $N_2O$ emissions at NPK, hairy vetch+N fertilizer and swine manure compost were reduced to 49.6%, 39.0% and 60.0%, respectively, in tillage treatment and 59.5%, 70.6% and 58.7%, respectively, in no-tillage treatment. 3) $N_2O$ emission measured in this study was 15.2~86.4% lower with tillage and no tillage treatments than that of the IPCC default value (0.0125 kg $N_2O$-N/kg N).

The impact of water vapour on the permeation of $CO_2$/O_2$/$N_2$through polyethersulfone membrane (PES 중공사막의 $CO_2$/O_2$/$N_2$ 기체 분리 특성에 미치는 수분의 영향)

  • 이상윤;신효진;김정훈;장봉준;이수복;김범식;김진수;강득주
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.168-171
    • /
    • 2004
  • 이산화탄소는 메탄, 오존, 산화질소, CFC등의 온실기체 중 약 50%를 차지하는 물질로서 이산화탄소 발생의 저감과 함께 회수 기술의 개발을 통한 배출량 억제는 환경적 측면에서 대단히 중요한 것으로 간주되고 있다. 따라서 각종 산업분야에서 발생하는 다양한 성분을 가진 다성분계 배가스내에 존재하는 10%내외의 이산화탄소만을 분리정제 농축하여 메탄, 메탄올 등의 다른 화학물질의 제조의 원료, 신에너지원, 고부가가치의 신제품 등으로 전환하는 연구가 활발히 진행 중이다.(중략)

  • PDF

Evaluating GHG Emissions Reduced by Real-time Traffic Information in Gasoline Vehicle (실시간교통정보 이용에 따른 가솔린차량의 온실가스 저감효과 평가)

  • Kim, Jun-Hyung;Um, Jung-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.443-453
    • /
    • 2011
  • Real-time Traffic Information Service could play a key role in reducing incomplete combustion time remarkably since it can provide traffic information in real-time basis. Emission characteristics of test engines were studied in terms of travel distance and speed. The present study focused on a north district in Daegu, 12 km. The driving for the emission test was done at 8AM, 3PM, 7PM which represents various traffic conditions. The reduced emissions of Greenhouse Gases (GHG) have been measured for a travel distance running at different loads (conventional shortest route and Real-time Traffic Information) and GHG ($CO_2$, $CH_4$, $N_2O$) are all inventoried and calculated in terms of existing emission factors. The emission of GHG has been shown to reduce linearly with travel distance: $CO_2$ (9.15%), $CH_4$ (18.43%), $N_2O$(18.62%).

A Experimental Study on Nitrous Oxide Formation in Direct Injection Diesel Engine (직접분사식 디젤엔진에서 아산화질소의 생성에 관한 실험적 연구)

  • Yoo, Dong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2015
  • It has been generally recognized that $N_2O$(Nitrous Oxide) emission from marine diesel engines has a close correlation with $SO_2$(Sulfur Dioxide) emission, and diversity of fuel elements using ships affects characteristics of the $N_2O$ emission. According to recent reports, in case of existence of an enough large NO(Nitric Oxide) generated as fuel combustion, effect of the $SO_2$ emission in exhaust gas on the $N_2O$ formation is more vast than effect of the NO. Therefore, $N_2O$ formation due to the $SO_2$ element operates on a important factor in EGR(Exhaust Gas Recirculation) systems for NOx reduction. An aim of this experimental study is to investigate that intake gas of the diesel engine with increasing of $SO_2$ flow rate affects $N_2O$ emission in exhaust gas. A test engine using this experiment was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition was set up at a 75% load. A standard $SO_2$ gas with 0.499%($m^3/m^3$) was used for changing of $SO_2$ concentration in intake gas. In conclusion, the diesel fuel included out sulfur elements did mot emit the $SO_2$ emission, and the $SO_2$ emission in exhaust gas according as increment of the $SO_2$ standard gas had almost the same ratio compared with $SO_2$ rate in mixture inlet gas. Furthermore, the $N_2O$ element in exhaust gas was formed as $SO_2$ mixture in intake gas because increment of $SO_2$ flow rate in intake gas increased $N_2O$ emission. Hence, diesel fuels included sulfur compounds were combined into $SO_2$ in combustion, and $N_2O$ in exhaust gas should be generated to react with NO and $SO_2$ which exist in a combustion chamber.

Photo-catalytic Degradation on B-, C-, N-, and F Element co-doped TiO2 under Visible-light Irradiation (B, C, N, F 원소 다중도핑된 TiO2의 가시광 광촉매 분해 반응)

  • Bai, Byong Chol;Im, Ji Sun;Kim, Jong Gu;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • In this study, boron, carbon, nitrogen and fluorine co-doped $TiO_{2}$ photocatalysts using tetraethylammonium tetrafluoroborate (TEATFB) have been prepared by different heat treatment temperatures to decrease the band gap. To explore the visible light photocatalytic activity of the novel low‐zband gap $TiO_{2}$ photocatalyst, the removal of two dyes was investigated, namely, acridine orange and rhodamine B. XRD patterns demonstrate that the samples calcined at temperatures up to $800^{\circ}C$ clearly show anatase peaks. The XPS results show that all the doped samples contain N, C, B and F elements and the doped $TiO_{2}$ shows the shift in the band gap transition down to 2.98 eV as UV-DRS results. In these UV-Vis results, photocatalytic activity of the doped $TiO_{2}$ is 1.61 times better than undoped $TiO_{2}$. Specially, excellent photoactivity results were obtained in the case of samples treated at $700^{\circ}C$.

Attenuating Effects of N-acetylcysteine (NAC) against Fish Parasiticide-induced Toxicity in Carp Cyprinus carpio (잉어(Cyprinus carpio)에서 어류 구충제에 대한 N-acetylcysteine(NAC)의 독성 저감 효과)

  • Park, Kwan-Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.484-489
    • /
    • 2011
  • This study examined whether N-acetylcysteine (NAC), a glutathione precursor, could attenuate toxic effects of three fish anti-parasitic agents, trichlorfon, hydrogen peroxide ($H_2O_2$) and formalin, all of which are known to exert side effects through free radical production. Common carp Cyprinus carpio were fed with NAC (approx. 50 mg/kg/day) for 3 consecutive days prior to anti-parasite bathing for a 24 hr period. Mortality rates were examined during this 24 hr bathing period, and selected hematological and biochemical parameters were also assessed at the termination of anti-parasite exposure. The mortality rates and plasma glucose elevations caused by all three anti-parasitics were significantly reduced by NAC pretreatment. Trichlorfon, but not $H_2O_2$ or formalin, elevated plasma levels of aspartatetransaminase (AST) and alanine-transaminase (ALT), and these elevations were attenuated by NAC. There was no change in hematocrit values in any treatment. The results provide evidence for the attenuating effects of NAC against toxicity caused by anti-parasite agents that act through free radical-producing properties. The results found in this study also suggest that NAC may be administered to fish to minimize toxicity in fish parasiticide use.

Effect of Steam-Treated Zeolite BEA Catalyst in NH3-SCR Reaction (NH3-SCR 반응에서 스팀 처리된 zeolite BEA 촉매의 영향)

  • Park, Ji Hye;Cho, Gwang Hee;Hwang, Ra Hyun;Baek, Jeong Hun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Nitrous oxide (N2O) is one of the six greenhouse gases, and it is essential to reduce N2O by showing a global warming potential (GWP) equivalent to 310 times that of carbon dioxide (CO2). Selective catalytic reduction (SCR) is a technology that converts ammonia into harmless N2 and H2O by using ammonia as a reducing agent to remove NOx, one of the air pollutants; the process also produces high denitrification efficiency. In this study, the Fe-BEA catalyst was steam-treated at 100 ℃ for 2 h before Fe ion exchange in the fixed bed reactor in order to investigate the effect of the steam-treated Fe-BEA catalyst on the NH3-SCR reaction. NH3-SCR reaction test of synthesized catalysts was performed at WHSV = 180 h-1, 370 to 400 ℃ in the fixed bed reactor. The Fe-BEA(100) catalyst steam-treated at 100 ℃ showed a somewhat higher activity than the Fe-BEA catalyst at 370 to 390 ℃. The catalysts were characterized by BET, ICP, NH3-TPD, H2-TPR, and 27Al MAS NMR in order to determine the cause affecting NH3-SCR activity. The H2-TPR result confirmed that the Fe-BEA(100) catalyst had a higher reduction of isolated Fe3+ than the Fe-BEA catalyst, and that the steam treatment increased the amount of isolated Fe3+ as an active species, thus increasing the activity.

Experimental Investigation on the Reduction Characteristics of Nitric Dioxide(NO2) over Platinum-based Oxidation Catalyst (백금산화촉매를 통한 이산화질소(NO2)의 저감 특성에 관한 실험적 연구)

  • Kim, Young-Deuk;Cho, Ja-Yun;Lee, Jung-Gil;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.142-149
    • /
    • 2012
  • The reduction characteristics of $NO_2$ to NO are experimentally studied over a platinum-based catalyst, especially at lower temperatures below about $200^{\circ}C$. In the present work, two types of steady-state experiments, engine bench and synthetic gas bench tests, are carried out in sequence. Steady-state engine bench tests with the DOC mounted on a light duty 4-cylinder 2.0 liter turbocharged diesel engine are performed and prove that CO plays a major role in $NO_2$ abatement at temperatures below the light-off temperature of CO oxidation, about $200^{\circ}C$. Synthetic gas bench tests are then performed using synthetic gas mixtures with CO, $C_3H_6$, NO, $NO_2$, $O_2$, $H_2O$ and $N_2$ in the $140{\sim}450^{\circ}C$ T-range and show that both CO and $C_3H_6$ are capable of reducing $NO_2$. It is noted that the reaction rate of $NO_2$ with $C_3H_6$ is much higher than that with CO. At temperatures below about $200^{\circ}C$, the reduction of $NO_2$ to NO is promoted with increasing CO concentration and $NO_2$/$NO_X$ ratio and with decreasing $O_2$ concentration, as well as with the presence of $H_2O$.

Experimental Study on Characteristics of NOX Reduction with Urea-Selective Catalytic Reduction System in Diesel Passenger Vehicle (승용 디젤차량에서 Urea-SCR 시스템의 NOX 저감 특성에 관한 실험적 연구)

  • Park, Seungwon;Lee, Seangwock;Cho, Yongseok;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • $NO_X$ reducing technique such as LNT, LNC, and selective catalytic reduction (SCR) have been developed and applied, especially on heavy-duty vehicles. However, it is expected that $NO_X$ reduction techniques will also be applied to diesel passenger vehicles. The urea-SCR system is receiving attention as the most effective $NO_X$ reduction technology without a fuel penalty. Thus, many advanced countries are developing this technology. The urea-SCR system sprays an aqueous urea solution that separates $NO_X$ into $N_2$ and $H_2O$, which are harmless and emitted into the atmosphere. The urea injected in front of the SCR catalyst should be changed to 100% $NH_3$, which is required for $NO_X$ reduction in the SCR system to maximize the reduction efficiency. The purpose of this study was to determine the basic data for the urea-SCR system to maximize the $NO_X$ reduction efficiency by understanding the $NO_X$ reduction characteristics in a real passenger vehicle to comply with the post EURO-6 emission regulation.