• Title/Summary/Keyword: $N_{2}$ gas

Search Result 3,455, Processing Time 0.034 seconds

Effects of Promoter on the Formation of Gas Hydrate from Blast Furnace Gas (철강공정 배기가스로부터 가스 하이드레이트 형성에 미치는 촉진제의 영향)

  • Kwak, Gye-Hoon;Sa, Jeong-Hoon;Kim, Si-Hwan;Lee, Bo Ram;Lee, Kun-Hong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • In this work, the performance of various promoters was investigated used in $CO_2$ separation from the gases emitted from steel-making process using gas hydrate technology. The studied promoters are tetrahydrofuran (THF), propylene oxide and 1,4-dioxane, which are all expected to form a structure II hydrate, and the target gases include $CO_2/N_2$ mixed gases ($CO_2/N_2$ = 20/80 and 40/60) and Blast Furnace Gas (BFG). The phase equilibrium points were measured when each promoter was added with various concentrations. For fast acquisition of abundant data, the "continuous" Quartz crystal microbalance (QCM) method was employed. In addition, the crystal structure of each gas hydrate was analyzed by Powder X-ray diffraction (PXRD).

Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes (고분자 분리막을 이용한 혼합가스($SF_6/N_2/O_2/CF_4$)로부터 $SF_6$의 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Choi, Ho-Sang;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • During the maintenance, repair and replacement process of circuit breaker, $SF_6$ reacted with input air in arc discharge, which led to the production of by-product gases (eg, $N_2$, $O_2$, $CF_4$, $SO_2$, $H_2O$, HF, $SOF_2$, $CuF_2$, $WO_3$). Among these various by-product gases, $N_2$, $O_2$, $CF_4$ is major component. Therefore, the effective separation process is necessary to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. In this study, the membrane separation process was applied to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. The concentration of $SF_6$ gas in gas produced from the electric power industry is over than 90 vol%. Therefore, we made the simulated gas containing $N_2$, $O_2$, $CF_4$, $SF_6$ which the concentration of $SF_6$ gas is minimum 90 vol%. From the results of membrane separation process of $SF_6$ gas from $N_2$, $O_2$, $CF_4$ $SF_6$ mixture gases, PSF membrane shown the highest recovery efficiency 92.7%, in $25^{\circ}C$ and 150 cc/min of retentate flow rate. On the other hand, PC membrane shown the highest recovery efficiency 74.8%, in $45^{\circ}C$ and 150 cc/min of retentate flow rate. Also, the highest rejection rate of $N_2$, $O_2$, $CF_4$ is 80, 74 and 58.9% seperately in the same operation condition of highest recovery efficiency. From the results, we supposed the membrane separation process as the effective $SF_6$ separation and recycle process from the mixture gas containing $N_2$, $O_2$, $CF_4$, $SF_6$.

The Analysis of Insulation Properties with Electron Collision Processes on SF6 Mixture Gases (전자충돌과정을 통한 SF6 혼합기체의 절연특성 분석)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.197-201
    • /
    • 2010
  • $SF_6$ gas would be used in power transformer, GIS (Gas insulated switchgear) and so on because of its electrically superior insulation and chemically stable structure. Recently, the reduction of $SF_6$ is required to avoid global warming and the researches on the dilution of $SF_6$ with other gases have been carried out. $SF_6$ mixture gases with $N_2$ and $C_xF_y$ have drawn attention to the synergy effect. However, in order to understand the mechanism of the synergy effect, it is important to analyze and evaluate properties of mixture gases quantitatively. In this paper, we investigated the mechanism of synergy effect from electron collision processes and electron energy distribution by solving Boltzmann equation with propagator method. Three kinds of gases for dilution of $SF_6$ ($SF_6/N_2$, $SF_6/CF$4 and $SF_6/C_4F_8$) are considered in this simulation. On the properties of $SF_6/N_2$ mixture gas, the variation of reduced electric field was shown highly within 0%~40% mixtures of $SF_6$. And the more low-level electron energy has been distributed, the higher insulation capability has appeared.

A study on the hydrogen generation's characteristics via non-thermal plasma and carrier gas (비열플라즈마에 의한 수소발생에 미치는 캐리어가스의 영향)

  • Kim, Jong-Seog;Park, Jae-Yoon;Jung, Jang-Gun;Kim, Tae-Yong;Koh, Hee-Seog;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.215-219
    • /
    • 2004
  • This paper is investigated about the effect of carrier gas and humidity for generating hydrogen gas. In the experimental result of generating hydrogen gas by non-thermal plasma reactor, the rate of generating hydrogen gas is different with what kind of carrier gas is. We used two types of carrier gas, such as $N_2$ and He. $N_2$ as carrier gas is more efficient to generate hydrogen gas than He because $N_2$ is reacted with $O_2$, which is made from water dissociation. In comparison with no humidity and humidity 45[%], the generation of hydrogen gas is decreased with increasing the humidity. That is the result that the energy for water dissociation is reduced on water surface because a part of plasma energy is absorbed at the small particle produced from humidifier.

  • PDF

Etch Characteristics of TiN Thin Film with Addition Cl2 Gas in BCl3/Ar Plasma (BCl3/Ar 플라즈마에 Cl2 가스 첨가에 따른 TiN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1051-1056
    • /
    • 2008
  • In this study, the investigations of the TiN etching characteristics were carried out with addition of $Cl_2$ gas in an inductively coupled $BCl_3$-base plasma system. Dry etching of the TiN was studied by varying the etching parameters including $Cl_2$ gas addition ratio, RF power, DC-bias voltage and pressure. The etch rate of TiN thin film was maximum when the $Cl_2$ gas addition flow was 2 sccm with fixed other conditions. As the RF power DC-bias voltage were increased, the etch rate of TiN thin film showed increasing tendency. $BCl_3/Cl_2$/Ar plasmas were characterized by optical emission spectroscopy (OES) analysis. The chemical reaction on the surface of the etched TiN films was investigated with X-ray photoelectron spectroscopy (XPS).

The breakdown characteristics of $N_2$ gas with lightning impulse voltage in the non-uniform electrode (불평등전극계에서 뇌임펄스전압에 대한 $N_2$기체의 절연파괴 특성)

  • Lee, Bok-Hee;Lee, Feng;Joe, Jeong-Hyeon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.301-304
    • /
    • 2008
  • This paper presents the experimental results on breakdown characteristics in $N_2$ gas under non-uniform electric fields caused by both the positive and negative lightning impulse voltages. $N_2$ gas have an advantage of eco-friendly and cost reduction, and safety aspects. In order to analyze the impulse pre-breakdown processes in $N_2$ gas, we carried out measurements and observations of the impulse breakdown voltages, pre-breakdown current and luminous signals. They were measured by a voltage divider, a shunt and a photo-multiplier tube, respectively. Additionally, the characteristics of discharge channels were observed by high speed cameras. The breakdown voltages in the positive polarity was lower than those in the negative polarity.

  • PDF

Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel (질소 보호 가스 첨가가 하이퍼 듀플렉스 스테인리스 밀봉용접재의 마모부식 저항성에 미치는 영향)

  • Kim, Hye-Jin;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • Duplex stainless steels with nearly equal fraction of the ferrite(${\alpha}$) phase and austenite(${\gamma}$) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE=wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of ${\alpha}$-phase and ${\gamma}$-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of $Cr_2N$ are the key points of this study. The primary results of this study are as follows. The addition of $N_2$ to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the ${\alpha}$-phase to ${\gamma}$-phase, increasing the fraction of ${\gamma}$-phase as well as decreasing the precipitation of $Cr_2N$. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing $N_2$ decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of ${\gamma}$-phase and the stability of passive film according to the addition $N_2$ gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

Growth and Properties of CrNx/TiNy/Al Based on N2 Gas Flow Rate for Solar Thermal Applications

  • Ju, Sang-Jun;Jang, Gun-Eik;Jang, Yeo-Won;Kim, Hyun-Hoo;Lee, Cheon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.146-149
    • /
    • 2016
  • The CrN/TiN/Al thin films for solar selective absorber were prepared by dc reactive magnetron sputtering with multi targets. The binary nitride CrN layer deposited with change in N2 gas flow rates. The gas mixture of Ar and N2 was an important parameter during sputtering deposition because the metal volume fraction (MVF) was controlled by the N2 gas flow rate. In this study, the crystallinity and surface properties of the CrN/TiN/Al thin films were estimated by X-ray diffraction (XRD), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The composition and depth profile of thin films were investigated using Auger electron spectroscopy (AES). The absorptance and reflectance with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 300~1,100 nm.

Characteristics of oxynitride films grown by PECVD using $N_2O$ gas ($N_2O$가스를 사용하여 PECVD로 성장된 Oxynitride막의 특성)

  • 최현식;이철인;장의구
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 1996
  • Plasma enhanced chemical vapor deposition (PECVD) allows low temperature processing and so it is widely used, but it causes instability of devices due to serious amount of impurities within the film. In this paper, electrical and chemical characteristics of the PECVD oxynitride film formed by different N$_{2}$O to N$_{2}$O+NH$_{3}$ gas ratio is studied. It has been found that hydrogen concentration of PECVD oxynitride film was decreased from 4.25*10$^{22}$ [cm$^{-2}$ ] to 1.18*10$^{21}$ [cm$^{-2}$ ] according to the increase of N$_{2}$O gas. It was also found that PECVD oxynitride films have low trap density in the oxide and interface in comparison with PECVD nitroxide films, and has higher refractive index and capacitance than oxide films. In particular, oxynitride film formed in gas ratio of N$_{2}$O/(N$_{2}$O+NH$_{3}$)= 0.88 shows increased capacitance and decreased leakage current due to small portion of hydrogen in oxide and the accumulation of nitrogen about 4[atm.%] at the interface.

  • PDF

Separation Permeation Characteristics of N2-O2 Gas in Air at Cell Membrane Model of Skin which Irradiated by High Energy Electron (고에너지 전자선을 조사한 피부의 세포막모델에서 공기 중의 O2-N2 혼합기체의 분리투과 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.261-270
    • /
    • 2019
  • The separation permeation characteristics of $N_2-O_2$ gas in air at cell membrane model of skin which irradiated by high energy electron(linac 6 MeV) were investigated. The cell membrane model of skin used in this experiment was a sulfonated polydimethyl siloxane(PDMS) non-porous membrane. The pressure range of $N_2$ and $O_2$ gas were appeared from $1kg_f/cm^2$ to $6kg_f/cm^2$. In this experiment(temperature $36.5^{\circ}C$), the permeation change of $N_2$ and $O_2$ gas in non-porous membrane by non-irradiation were found to be $1.19{\times}10^{-4}-2.43{\times}10^{-4}$, $1.72{\times}10^{-4}-2.6{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. That of $N_2$ and $O_2$ gas in non-porous membrane by irradiation were found to be $0.19{\times}10^{-4}-0.56{\times}10^{-4}$, $0.41{\times}10^{-4}-0.76{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. The irradiated membrane was significantly decreased about 4-10 times than membrane which was not irradiated. And ideal separation factor of $N_2$ and $O_2$ gas by non-irradiation was found to be from 1.32 to 0.42 and that of $N_2$ and $O_2$ gas by irradiation was found to be from 0.237 to 0.125. The irradiated membrane was significantly decreased about 4-5 times than membrane which was not irradiated. When the operation change(cut) and pressure ratio(Pr) by non-irradiation were about 0, One was increased to the oxygen enrichment and the other was decreased to the oxygen enrichment. The irradiated membrane was significantly decreased about 4-19 times than membrane which was not irradiated. As the pressure of $N_2$ and $O_2$ gas was increased, the selectivity was decreased. As separation permeation characteristics of $N_2-O_2$ gas in cell membrane model of skin were abnormal, cell damages were appeared at cell.