• 제목/요약/키워드: $NO_x$ production

검색결과 425건 처리시간 0.025초

EGR 및 예혼합 정도가 메탄/공기 화염의 NO 생성에 미치는 영향 (Effects of EGR and Premixedness on NO Formation of Methane/Air Flames)

  • 이원남;이웅재
    • 한국연소학회지
    • /
    • 제4권2호
    • /
    • pp.63-74
    • /
    • 1999
  • The effects of EGR and premixedness on NO formation have been numerically investigated. The flame structure is classified into three categories; premixed flame($=1)$, rich/lean premixed flame(${\alpha}=0.6$ and 0.8) and diffusion flame(${\alpha}=0$). NO formation/destruction mechanisms are assorted to thermal, reburn and Fenimore mechanisms. The temperature of unburned gas is arranged to 298 and 500 K to have access to the condition in a real internal combustion engine. The results show that all three NO formation/destruction reaction rates in the fuel rich flame zone could be decreased by EGR for rich/lean premixed flames, while those in the fuel lean flame zone are not significantly changed. Near the stagnation plane, however, only the thermal NO reaction rate is decreased. The contribution of reburn and Fenimore mechanisms for the net NO production becomes less significant as the premixedness of a flame increases. The larger amount of NO reduction with EGR is expected under the higher temperature and/or higher fuel/air premixedness conditions due to the increased contribution of the thermal mechanism. The role of Fenimore and reburn mechanisms could be important for rich premixed and diffusion flames; therefore, the effect of EGR on NO reduction could vary with fuel/air premixedness. The premixedness of a partially premixed flame changes the flame structure and could affect the NO production characteristics.

  • PDF

산화은/이산화티타늄 혼합물을 광촉매로 활용한 물/메탄올 분해 수소제조 (Hydrogen Production from Photocatalytic Splitting of Water/Methanol Solution over a Mixture of P25-TiO2 and AgxO)

  • 김강민;정경미;박노국;이태진;강미숙
    • 청정기술
    • /
    • 제21권4호
    • /
    • pp.271-277
    • /
    • 2015
  • 본 연구에서는 효율적인 광 전기화학적 수소제조를 위하여 광촉매로써 상용화 촉매인 P25-티타니아와 합성한 AgxO를 적정 질량비로 혼합한 촉매를 사용하였다. AgxO는 일반적인 솔-젤법으로 합성하였으며, 은 용액의 안정화를 위해 합성과정 중에 수산화테트라메틸암모늄을 첨가하고 열처리 온도를 -5, 25, 50 ℃로 다양화시켜 세 가지 형태의 산화은을 얻었다. 합성한 AgxO의 물리화학적 특성은 X-선 회절분석법(XRD), 주사전자현미경(SEM), 자외선-가시선 분광광도계(UV-Visible spectroscopy), X-선 광전자 분광법(XPS)을 이용하여 확인하였다. 물/메탄올(무게 비 1:1) 혼합용액을 광분해 한 결과, 순수 P25-티타니아보다 AgxO가 첨가된 혼합촉매에서 현저히 높은 양의 수소가 발생하였다. 보조 산화제로써 H2O2를 첨가한 경우 그리고 AgxO의 합성온도가 50 ℃일 때 가장 높은 수소 제조효율을 나타내었다. 특히, 0.9 g의 P25-티타니아와 0.1 g의 AgxO (50 ℃)를 혼합한 촉매를 사용하였을 때 8시간 반응하는 동안에 13,000 μmol의 수소가 발생하였다.

$H_2/HCl/Air$ 예혼합 화염의 질소산화물 생성에서 염화수소의 영향 (The Effect of Hydrogen Chloride on the $NO_x$ Production in $H_2/HCl/Air$ Premixed Flame)

  • 권영석;이기용
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.28-34
    • /
    • 2004
  • Numerical simulations of freely propagating flames burning $H_2/HCl/Air$ Air mixtures were performed at atmospheric pressure in order to understand the effect of hydrogen chloride on flame structures. The chemical and physical effects of hydrogen chloride on flame structures were observed. A chemical kinetic mechanism was developed, which involved 26 gas-phase species and 198 forward elementary reactions. Under several equivalence ratios the flame speeds were calculated and compared with those obtained from the experiments, the results of which were in good agreement. As hydrogen chloride as additive was added into $H_2/Air$ flame, the flame speed, radical concentration and NO production rate were decreased. The chemical effect of hydrogen chloride caused the reduction of radical concentration, and then the decrease of the net rate of NO production. It was found that the influence in the reduction of $EI_{NO}$ with the addition of hydrogen chloride was attributed more due to the chemical effect than the physical effect.

  • PDF

ECU 커먼레일 디젤기관에 있어서 매연 및 NOX 배출물 동시 저감용 일체형 요소-SCR 촉매필터 시스템의 특성에 관한 연구 (A Study on Characteristics of an Integrated Urea-SCR Catalytic Filter System for Simultaneous Reduction of Soot and NOX Emissions in ECU Common-rail Diesel Engines)

  • 배명환
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.111-120
    • /
    • 2014
  • The aim of this study is to develop an integrated urea-SCR catalytic filter system for reducing soot and $NO_X$ emissions simultaneously in diesel engines. In this study, the characteristics of exhaust emissions relative to reactive activation temperature under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with the integrated urea-SCR $MnO_2-V_2O_5-WO_3/TiO_2/SiC$ catalytic filter system operating at three kinds of engine speeds. The urea-SCR reactor is used to reduce $NO_X$ emissions, and the catalytic filter system is used to reduce soot emissions. The reactive activation temperature is very important for reacting a reducing agent with exhaust emissions. The reactive activation temperatures in this experiment is applied to 523, 573 and 623 K. The fuel is sprayed by the pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the $NO_X$ conversion rate is the highest as 83.9% at the reactive activation temperature of 523 K in all experimental conditions of engine speed and load, and the soot emissions shown by the average reduction rate of approximately 93.3% are almost decreased below 0.6% in all experimental conditions regardless of reactive activation temperatures. Also, the THC and CO emissions by oxidation reaction of Mn, V and Ti are shown in the average reduction rates of 70.3% and 38% regardless of all experimental conditions.

온도와 광도가 톨루엔-NOx-공기 혼합물의 광산화 반응에 미치는 영향의 비교 (Comparison of Temperature and Light Intensity Effects on the Photooxidation of Toluene-NOx-Air Mixture)

  • 주옥정;배귀남;최지은;이승복;김영성;문길주;윤순창
    • 한국대기환경학회지
    • /
    • 제23권3호
    • /
    • pp.353-363
    • /
    • 2007
  • To differentiate temperature effect from the light intensity effect on the formation of secondary products during the photooxidation of toluene-$NO_x$-air mixtures, steady-state air temperature was changed from $20^{\circ}C\;to\;33^{\circ}C$ at the same light intensity of $0.39min^{-1}$ in an indoor smog chamber. Smog chamber consisted of 64 blacklights and a $5.8m^3$ reaction bag made of Teflon film. Air temperature was controlled by an air-conditioning system. The starting time for rapid conversion of NO to $NO_2$ was slightly delayed with decreasing air temperature. In contrast to light intensity effect, the ozone formation time and the ozone production rate were insensitive to air temperature. Although the formation time for secondary organic aerosols was not changed, the particle number concentration increased with temperature. However, the newly formed secondary organic aerosol mass at lower temperature was higher than that at higher temperature. Since light intensity significantly affected the starting time and quantity of ozone and aerosol formation, it is considered that the temperature could contribute partly the quantity of aerosol formation during the photooxidation of toluene-$NO_x$-air mixtures.

어성초(魚腥草)의 면역활성에 미치는 영향 (Immune Enhancing Effect of Houttuyniae Herba on Mouse Macrophage)

  • 김정현;김윤상;임은미
    • 대한한방부인과학회지
    • /
    • 제25권2호
    • /
    • pp.12-22
    • /
    • 2012
  • Objectives: The aim of this study is to investigate immune enhancing effect of Houttuyniae Herba water extract(HW) on RAW 264.7 cell of mouse macrophages. Methods: Effects of HW on productions of nitric oxide(NO) and hydrogen peroxide($H_2O_2$) in RAW 264.7 mouse macrophages were measured. Effect of HW on production of cytokines such as interleukin(IL)-$1{\beta}$, IL-6, and tumor necrosis factor(TNF)-${\alpha}$ in RAW 264.7 cells was accessed by a multiplex bead array assay based on xMAP technology. All of results were represented P<0.05 compared to the normal. Results: 1. After 24 hr incubation, HW increased significantly NO production in RAW 264.7 cells at the concentrations of 25, 50, 100 and 200 ${\mu}g$/mL. 2. After 24 hr incubation, HW increased significantly hydrogen peroxide production in RAW 264.7 cells at the concentrations of 25, 50, 100 and 200 ${\mu}g$/mL. 3. After 24 hr incubation, HW increased significantly IL-$1{\beta}$ production in RAW 264.7 cells at the concentrations of 100 and 200 ${\mu}g$/mL. 4. After 24 hr incubation, HW increased significantly IL-6 production in RAW 264.7 cells at the concentrations of 100 and 200 ${\mu}g$/mL. 5. After 24 hr incubation, HW increased significantly TNF-${\alpha}$ production in RAW 264.7 cells at the concentrations of 50, 100, and 200 ${\mu}g$/mL. Conclusions: These results suggest that HW has immune enhancing activity related with its increasement of NO, hydrogen peroxide, IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in macrophages.

Effects of Cellulase Supplementation on Nutrient Digestibility, Energy Utilization and Methane Emission by Boer Crossbred Goats

  • Wang, Lizhi;Xue, Bai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권2호
    • /
    • pp.204-210
    • /
    • 2016
  • This study examined the effect of supplementing exogenous cellulase on nutrient and energy utilization. Twelve desexed Boer crossbred goats were used in a replicated $3{\times}3$ Latin square design with 23-d periods. Dietary treatments were basal diet (control, no cellulase), basal diet plus 2 g unitary cellulase/kg of total mixed ration dry matter (DM), and basal diet plus 2 g compound cellulase/kg of total mixed ration DM. Three stages of feeding trials were used corresponding to the three treatments, each comprised 23 d, with the first 14 d as the preliminary period and the following 9 d as formal trial period for metabolism trial. Total collection of feces and urine were conducted from the 4th d of the formal trial, and gas exchange measures were determined in indirect respiratory chambers in the last 3 d of the formal trial. Results showed that cellulase addition had no effect (p>0.05) on nutrient digestibility. Dietary supplementation of cellulase did not affect (p>0.05) N intake and retention in goats. Gross energy (GE) intake, fecal energy and urinary energy excretion, heat production were not affected (p>0.05) by the cellulase supplementation. Total methane emission (g/d), $CH_4$ emission as a proportion of live weight or feed intake (DM, organic matter [OM], digestible DM or digestible OM), or $CH_4$ energy output ($CH_4$-E) as a proportion of energy intake (GE, digestible energy, or metabolizable energy), were similar (p>0.05) among treatments. There was a significant (p<0.001) relationship between $CH_4$ and live weight (y = 0.645x+0.2, $R^2$ = 0.54), $CH_4$ and DM intake (y = 16.7x+1.4, $R^2$ = 0.51), $CH_4$ and OM intake (y = 18.8x+1.3, $R^2$ = 0.51) and $CH_4$-E and GE intake. Results from this study revealed that dietary supplementation of cellulase may have no effect on nutrient digestibility, nitrogen retention, energy metabolism, and methane emission in goat.

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Environmental analysis of present and future fuels in 2D simple model marine gas tubines

  • El Gohary, M. Morsy
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.559-568
    • /
    • 2013
  • Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the $CO_2$ emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the $NO_x$ emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more $NO_x$ than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive $NO_x$ control measures are a must to control these emissions levels.