• Title/Summary/Keyword: $NO_2$-N

Search Result 9,918, Processing Time 0.038 seconds

Response of N. Sources to Nutrient Uptake of Tobacco Plant (질소원(窒素源)에 따른 담배식물의 양분흡수반응(養分吸收反應))

  • Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.413-418
    • /
    • 1985
  • Tobacco plant(8-leaf seedlings) were grown on water culture fertilized with different N sources ($NO_3-N$, $NH_4-N$, $NO_3+NH_4-N$) during 15 days. Daily uptake of nutrients and inorganic constituents in plants were investigated in relation to growth responses of them. 1. Nitrate-fed plant showed higher daily uptake of inorganic cations than those in other treatments, and reached about two times higher uptake of nitrogen and three times more uptake of cations (K, Ca, Mg). Potassium was preferentially uptaken at a very fast rate from the beginning after treatment. Also $NO_3-N$ tended to be taken up selectively by the plant from the mixture of nitrate and $NH_4-N$. 2. The initial pH (pH 6.0) of culture medium drastically changed into acid (pH 4.0) in the $NH_4-N$ medium, but into slightly higher (pH 6.4) in the nitrate when measured after exposure of 24 hours. The mixture also tended to show an acidity but much weaker than $NH_4-N$ solution. 3. Nitrate-fed plant had a normal growth pattern but $NH_4-N$ fed plant almost stopped growing. Those plants containing both nitrate and ammonium N were also showed very poor growth.

  • PDF

Analysis of the Amino Acids Content of Three Neopyropia Dentata Cultivars under the Two Different Aquafarm Environment in Haenam, Korea (해남의 김 양식장별 잇바디돌김(Neopyropia dentata) 3품종의 아미노산 성분 분석)

  • Hye Ri Nam;Sung Je Choi
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.3
    • /
    • pp.5-13
    • /
    • 2023
  • This study aims to assess the water quality of the Eoran and the Imha aquafarm with different aquafarm environments in Haenamn-gun, and analyzed the composition of total amino acids (TAAs) and free amino acids (FAAs) in three Neopyropia dentata cultivars (Yuldo, Supum1 and 2) in two aquafarms. Mean water temperature ranged from 22.9 to 10.9℃ during September to November 2018. In Eoran aquafarm, the water quality analysis showed that NO2-N was high in September, NH4-N and COD in October, and NO3-N, DIN, and DIP in November. In Imha aquafarm, the water quality analysis showed that NH4-N and COD was high in September, NO3-N and DIN in October, and NO2-N and DIP in November. We confirmed the proximate composition, amino acid composition (TAA/FAA) in two auqufarms. In the Eoran aquafarm, the 'Yuldo' cultivar had significantly higher crude lipid content than two other cultivars (Supum 1 and 2). The 'Supum1' cultivar had significantly higher moisture content, whereas the highest content of crude protein, crude lipid, crude ash, and carbohydrates was found in the 'Supum2' cultivar. In the Imha aquafarm, the content of crude lipid and crude ash was highest in the 'Yuldo' cultivar. The highest content of crude protein and carbohydrates was found in the 'Supum1' cultivar, while the 'Supum2' cultivar had the highest content of moisture. The highest concentration of glutamic acid belong to TAAs is observed in all cultivars from Eoran and Imha aquafarm, while all cultivars in two aquafarm also contained higher content of alanine among the detected FAAs.

Mechanical and Thermal Conductivity Properties of Yttrium Nitrate Added AlN Sintering Body (Y(NO3)3·6H2O 첨가된 AlN 소결체의 기계적 및 열전도도 특성)

  • Chung, J.K.;Lee, J.H.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • Aluminum nitride (AlN) is used by the semiconductor industry that has requirements for high thermal conductivity. The theoretical thermal conductivity of single crystal AlN is 320W/mK. Whereas, the values measured for polycrystalline AlN ceramics range from 20 W/mK to 280 W/mK. The variability is strongly dependent upon the purity of the starting materials and non-uniform dispersibility of the sintering additive. The conventional AlN sintering additive used yttria ($Y_2O_3$), but the dispersibility of the powder in the mixing process was important. In this study, we investigated the mechanical and thermal conductivity of yttrium nitrate ($Y(NO_3)_3{\cdot}6H_2O$), as a sintering additive in order to improve the dispersibility of $Y_2O_3$. The sintering additives content was in the range of 2 to 4.5wt.%. The density of AlN gradually increased with increasing contents of sintering additive and the flexural strength gradually increased as well. The flexural strength of the sintered body containing 4 wt% of $Y_2O_3$ and $Y(NO_3)_3{\cdot}6H_2O$ was 334.1 MPa and 378.2 MPa, respectively. The thermal conductivities were 189.7W/mK and 209.4W/mK, respectively. In the case of hardness, there was only a slight difference and the average value was about 10 GPa. Therefore, densification, density and strength values were found to be proportional to its content. It was confirmed that AlN using $Y(NO_3)_3{\cdot}6H_2O$ displayed relatively higher thermal conductivity and mechanical properties than the $Y_2O_3$.

Changes In Concentrations of Urea-N, NH4-N and NO3-N in Percolating Water During Rice Growing Season (수도재배포장에서 침투수의 Urea-N, NH4-N 및 NO3-N의 농도변화)

  • Lee, Sang-Mo;Yoo, Sun-Ho;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.160-164
    • /
    • 1995
  • This study was conducted to obtain quantitative data on the behavior of surface-applied urea to a paddy field which would help to protect against environmental pollution as well as to increase the efficiency of nitrogen fertilizer. The percolating water samples were collected with porous ceramic cups installed at 25, 50 and 75cm depths in a paddy field during the rice growing season(June 1992-September 1992) and analyzed for urea-N. NHAN and $NO_3-N$. In the paddy field to which urea fertilizer was applied at the rates of 12 and 24kg N/10a, the surface-applied urea was detected even at 75cm depth as the form of urea-N upto 12days after application. The maximum concentrations of urea-N in the percolating water sampled at 25, 50 and 75cm depths were the same irrespective of soil depth and the values were 0.06 and $0.12{\mu}g/m{\ell}$ for the application rates of 12 and 24kg N/10a respectively. The concentrations of $NH_4-N$ gradually decreased with time during the vegetative growth period : thereafter. the concentrations remained nearly constant. The maximum concentrations of $NH_4-N$ at 25cm depth were 1.2 and $5.6{\mu}g/m{\ell}$ for 12 and 24kg N/10a rate respectively. The $NO_3-N$ concentrations of percolating water ranged 0.1~0.5 and $0.2{\sim}0.5{\mu}g/m{\ell}$ for urea application rates of 12 and 24kg N/10a respectively. The nitrate concentration data suggest that nitrification process occurred continuously in paddy field during the rice growing season.

  • PDF

The Effects of Nitrogen Fertilization Levels on the Content of ${NH_4}^+$-N and ${NO_3}^-$-N in Soil of Zoysiagrass(Zoysia japonica ) and 'Suffolk' Kentucky Bluegrass(Poa pratensis) (한국잔디(Zoysia japonica)와 'Suffolk' Kentucky bluegrass(poa pratensis)에서 지소지용 수준이 토양중 ${NH_4}^+$-N와 ${NO_3}^-$-N 함량에 미치는 영향)

  • 김성태;육완방;이정재;김인섭;함성규
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.3
    • /
    • pp.207-212
    • /
    • 1995
  • This experiment was conducted to investigate the effect of the nitrogen fertilization levels on the content of $NH_4^+$-N in soil of 'Suffolk' Kentucky bluegrass and zoysiagrass. The results obtained are summarized as follows : 1.According to the nitrogen fertilization levels, the content of $NH_4^+$-N in soil of Kentucky blue-grass and zoysiagrass was not significantly different. The content of $NH_4^+$-N in soil of Kentucky bluegrass and zoysiagrass was highest in June and December and lowest in March and September. 2.The content of $NH_3^-$-N in soil was increased by increasing the nitrogen fertilization levels in both Kentucky bluegrass and zoysiagrass. However, the deeper the depth of soil the less the content of $NO_3^-$-N in soil. In 40~60cm soil depth, the content of $NO_3^-$-N in soil was lower than 10ppm in average. Even in June, which was the highest month of the content of $NO_3^-$-N in soil, the content of $NO_3^-$-N in soil was not overpassed the degree of 20ppm.

  • PDF

Seasonal Variation in Water Quality of Mankyeong River and Groundwater at Controlled Horticulture Region (만경강과 그 인근 시설재배지 지하수의 시기별 수질변화)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Kang, Jong-Gook;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.223-231
    • /
    • 1999
  • This study was carried out to investigate the factors influencing water quality of the river (Mankyeong River) and groundwater in controlled horticulture region from 1994 to 1998. Water quality of Mankyeong River was monitored at 13 sites along main stream for 6 months from April to September from 1994 to 1997. Monthly average concentrations of $NH_4-N$, $SO{_4}^{2-}$ and $Cl^-$ were highest in April, while that of $NO_3-N$ was highest in August. Monthly average concentrations of COD was highest in September Concentrations of $NH_4-N$ and $SO{_4}^{2-}$ in many sites of Mankyeong River exceeded the water quality criteria of agricultural water for irrigation. Water quality of Mankyeong River was not suitable for the irrigation source excepted the sites such as Hari, Gosan and Soyang stream. The floodgates of Mokcheon, Yocheon, Jeonju and Samcheon streams were rapidly polluted by the municipal sewage, otherwise the Iksan stream was rapidly polluted by the sewage of swine. The sum of inorganic ion concentrations in Mankyeong River was highest at floodgate of Yocheon due to the sewages municipal and industrial. The order of the major anions and canons concentration in Mankyeong River- stream were $SO{_4}^{2-}$ > $Cl^-$ > $NO{_3}^-$ > $PO{_4}^{3-}$ and $Na^+$ > $Ca^{2+}$ > $NH{_4}^+$ > $Mg^{2+}$ > $K^+$, respectively. The geoundwater quality at controlled horticulture region was surveyed 4 sites from 1994 to 1998. Concentrations of $NH_4-N$ and $NO_3-N$ were lower at the deeper groundwater. However there was no difference between the concentrations of $SO{_4}^{2-}$ and $Na^+$, and the groundwater depth below 15m. Contents of $NH_4-N$, $NO_3-N$, $PO{_4}^{3-}$, $SO{_4}^{2-}$, $Na^+$ and $Cl^-$ in groundwater were the highest at dry season. Nitrate-N level, exceeded $20mg\;l^{-1}$, the critical level for agricultural usage, at Yongjinmyeon Wanju and $PO{_4}^{3-}$ concentration were higher at Seogtandong Iksan than the other places.

  • PDF

Fault Diameter of Folded Hyper-Star Interconnection Networks FHS(2n,n) (상호연결망 폴디드 하이퍼-스타 연결망 FHS(2n,n)의 고장 지름)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • The KIPS Transactions:PartA
    • /
    • v.17A no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The fault diameter is one of the important measures for transmission rate and reliability of interconnection network. H.-O. Lee et al.[Parallel paths in folded hyper-star graph, Journal of KIPS, Vol.6, No.7, pp.1756-1769, 1999] suggested the node-disjoint paths of FHS (2n,n), and proved that the fault diameter of FHS(2n,n) is less than 2n-1. In this paper, we suggest an advanced node-disjoint paths of FHS(2n,n). We also prove that the wide diameter of FHS(2n,n) is dist(U,V)+4, and the fault diameter of FHS(2n,n) is less than n+2.

A Study on the Behavior of Surface-Applied Urea with $^{15}N$ Isotope Dilution Technique in Paddy Soil (논토양에서 중질소(N-15)를 이용한 표면시용 요소로부터 유래하는 질소의 행동에 관한 연구)

  • Lee, Sang-Mo;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.277-286
    • /
    • 1994
  • The pot experiment using $^{15}N$ isotope dilution technique was carried out to calculate the balance of nitrogen of surface applied urea in the rice-soil system. The $^{15}N$ concentration was determined by stable isotope ratio mass spcetrometer (model: VG ISO-GAS MM622). In the pots with $^{15}N$ labeled urea application at the rates of 15 and 30 kg N/10a, the percentage of nitrogen derived from fertilizer (NDFF) in rice was higher at the rate of 30 kg N/10a (average 89%) than at the rate of 15 kg N/10a (average 64%). However, the recovery as percentage of fertilizer N by rice was higher at the rate of 15 kg N/10a (65.5%) than at the rate of 30 kg N/10a (54.2%). The percentage of the fertilizer N remained in extractable inorganic N form at the rates of 15 and 30 kg N/10a were $13.5%\;(NH_4-N\;5.53%,\;NO_3-N\;7.99%)$ and $16.5%\;(NH_4-N\;7.49%,\;NO_3-N\;8.98%)$ in unplanted soil, and $2.0%\;(NH_4-N\;0.63%,\;NO_3-N\;1.32%)$ and$2.3%\;(NH_4-N\;0.87%,\;NO_3-N\;1.40%)$ in soil planted to rice, respectively. The dominant form of inorganic-N in soil after harvest was $NO_3-N$ form rather than $NH_4-N$ form regardless of urea application rate or rice cultivation. The percentage of the fertilizer N remained in organic N form at the rates of 15 and 30 kg N/10a were 65.0 and 41.8% in unplanted soil, and 23.7 and 26.9% in soil planted to rice, respectively. In conclusion, the efficiency of surface-applied urea was greater at the rate 15 kg N/10a than at the rate of 30 kg N/10a.

  • PDF

The Effects of Temperature on Maintaining the Stability of Water Quality in Biofloc-based Zero-water Exchange Culture Tanks (Biofloc을 기반으로 한 무 환수 사육 시스템의 수질 안정 유지에 미치는 수온의 영향)

  • Cho, Seo-Hyun;Jeong, Jong-Heon;Kim, Myung-Hee;Lee, Kyu-Tae;Kim, Dae-Jung;Kim, Kwang-Hyun;Oh, Sang-Pil;Han, Chang-Hee
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.496-506
    • /
    • 2015
  • This study explored adequate water temperature ranges for maintaining stable water quality in a biofloc- based zero-water exchange culture system. Five experimental tanks with the following temperatures were set up: 10℃, 15℃, 20℃, 25℃, and 30℃. First, a biofloc-based culture system was developed in the experimental tanks; then, the tanks were stocked with goldfish and went without a water exchange for 60 days. Conditions for developing a biofloc-based culture system and stable water quality in low concentrations of inorganic nitrogen compounds at 10℃, 15℃, 20℃, 25℃, and 30℃ were maintained after 17, 26, 43, 68, and 78 days, respectively. Beginning from when the goldfish were stocked in the biofloc-based culture tanks, concentrations of $NH_4{^+}-N$ remained constant and at low levels at 10℃ and 15℃, but they showed a gradual increase at 20℃, 25℃, and 30℃. Concentrations of $NO_2{^-}-N$ and $NO_3{^-}-N$ at 10℃ and 15℃ did not remain at low levels and immediately increased. While $NO_2{^-}-N$ concentrations at above 20℃ remained constant and stable at relatively low levels, $NO_3{^-}-N$ concentrations showed a gradual increase. Conditions of 15℃ and below could not maintain low and stable concentrations of $NO_2{^-}-N$. In the pH range of 4.0 to 6.0, $NH_4{^+}-N$ concentration decreased as the pH rose. However, there was no correlation between pH and $NH_4{^+}-N$ concentration in the pH range of 6.0 to 8.0. These results indicate that pH levels should be kept at pH 6.0 and above to maintain a low and stable concentration of $NH_4{^+}-N$ at above 20℃.

Effects Of $\textrm{NO}_3^\;-$-N : $\textrm{NH}_4^\;+$-N Ratio in Nutrient Solution on the Growth and Quality of Welsh Onion(Allium fistulosum L.) (양액내 $\textrm{NO}_3^\;-$-N과 $\textrm{NH}_4^\;+$-N비가 잎파의 생육과 품질에 미치는 영향)

  • 박권우;이정훈;장매희
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.99-105
    • /
    • 1994
  • The objective of this study was conducted for elucidation of effects of the NO$_3$$^{[-10]}$ -N. NH$_4$$^{+}$-N ratio in the nutrient solution on the growth and quality of welsh onion(Allium fistulosum L.). The pH of nutrient solution increased in NO$_3$$^{[-10]}$ -N : NH$_4$$^{+}$-N ratio of 9 : 1 treatment, decreased in 1 : 1, 1 : 3 treatment, but was stable in 3 : 1 treatment during cultivation. The apparent growth of welsh onion was best in the treatment of 9 : 1(NO$_3$$^{[-10]}$ -N : NH$_4$$^{+}$-N ratio), however the treatment of 1 : 3 resulted in poor growth. The NO$_3$$^{[-10]}$ -N content of the plants increased in proportion to that content of nutrient solution. Pyruvic acid content of welsh onion was highest at 9 : 1, 3 : 1 treatment, and lowest at 1 : 3 treatment.tment.

  • PDF