Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.5.496

The Effects of Temperature on Maintaining the Stability of Water Quality in Biofloc-based Zero-water Exchange Culture Tanks  

Cho, Seo-Hyun (Department of Molecular Biology, Dong-eui University)
Jeong, Jong-Heon (Department of Molecular Biology, Dong-eui University)
Kim, Myung-Hee (Department of Molecular Biology, Dong-eui University)
Lee, Kyu-Tae (NeoEnBiz corporation Bucheon Daewoo Technopark)
Kim, Dae-Jung (New Strategy Research Center, National Fisheries, Research and Development Institute)
Kim, Kwang-Hyun (Department of Life Science and Biotecnology, Dong-eui University)
Oh, Sang-Pil (Division of Export promotion, Jeju Special Self-Governing Province)
Han, Chang-Hee (Department of Molecular Biology, Dong-eui University)
Publication Information
Journal of Life Science / v.25, no.5, 2015 , pp. 496-506 More about this Journal
Abstract
This study explored adequate water temperature ranges for maintaining stable water quality in a biofloc- based zero-water exchange culture system. Five experimental tanks with the following temperatures were set up: 10℃, 15℃, 20℃, 25℃, and 30℃. First, a biofloc-based culture system was developed in the experimental tanks; then, the tanks were stocked with goldfish and went without a water exchange for 60 days. Conditions for developing a biofloc-based culture system and stable water quality in low concentrations of inorganic nitrogen compounds at 10℃, 15℃, 20℃, 25℃, and 30℃ were maintained after 17, 26, 43, 68, and 78 days, respectively. Beginning from when the goldfish were stocked in the biofloc-based culture tanks, concentrations of $NH_4{^+}-N$ remained constant and at low levels at 10℃ and 15℃, but they showed a gradual increase at 20℃, 25℃, and 30℃. Concentrations of $NO_2{^-}-N$ and $NO_3{^-}-N$ at 10℃ and 15℃ did not remain at low levels and immediately increased. While $NO_2{^-}-N$ concentrations at above 20℃ remained constant and stable at relatively low levels, $NO_3{^-}-N$ concentrations showed a gradual increase. Conditions of 15℃ and below could not maintain low and stable concentrations of $NO_2{^-}-N$. In the pH range of 4.0 to 6.0, $NH_4{^+}-N$ concentration decreased as the pH rose. However, there was no correlation between pH and $NH_4{^+}-N$ concentration in the pH range of 6.0 to 8.0. These results indicate that pH levels should be kept at pH 6.0 and above to maintain a low and stable concentration of $NH_4{^+}-N$ at above 20℃.
Keywords
BFT; Biofloc; culture system; goldfish; temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Asaduzzaman, M., Wahab, M. A., Verdegem, M. C. J., Mondal, M. N. and Azim, M. E. 2009. Effects of stocking density of freshwater prawn Macrobrachium rosenbergii and addition of different levels of tilapia Oreochromis niloticus on production in C/N controlled periphyton based system. Aquaculture 286, 72-79.   DOI
2 Vinatea, L., Galvez, A. O., Browdy, C. L., Stokes, A., Venero, J., Haveman, J., Lewis, B. L., Lawson, A., Shuler, A. and Leffler, J. W. 2010. Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquacult. Eng. 42, 17-24.   DOI
3 Wilén, B. M. and Balmér, P. 1999. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Res. 33(2), 391-400.   DOI
4 Wilén, B. M., Nielsen, J. L., Keiding, K. and Nielsen, P. H. 2000. Influence of microbial activity on the stability of activated sludge flocs. Colloids Surf., B 18, 145-156.   DOI
5 Wurts, W. A. and Durborow, R. M. 1992. Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds. SRAC Publication No. 464, 1-4.
6 Zhang, L., Liu, Y., Shen, Y., Liu, H. and Xiong, Y. 2010. Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination 250(3), 915-920.   DOI
7 Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61(4), 533-616.
8 Siripong, S. and Rittmann, B. E. 2007. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res. 41(5), 1110-1120.   DOI
9 Seka, M. A. and Verstraete, W. 2003. Test for assessing shear sensitivity of activated sludge flocs: a feasibility study. Water Res. 37, 3327-3334.   DOI
10 Shammas, N. K. 1986. Interactions of temperature, pH, and biomass on the nitrification process. J. Water Pollut. Control Fed. 58, 52-59.
11 Simon, Jörg. and Klotz, M. G. 2013. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta 1827, 114-135   DOI
12 Sundaresan, N. and Philip, L. 2008. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures. Water Sci. Technol. 58, 819-830.   DOI
13 Szwerinski, H., Arvin, E. and Harremoës, P. 1986. pH-decrease in nitrifying biofilms. Water Res. 20, 971-976.   DOI
14 Tran-Duy, A., Schrama, J. W., Dam, A. A. V. and Verreth, J. A. J. 2008. Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus. Aquaculture 275, 152-162.   DOI
15 Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., Folke, C., Lubchenco, J., Mooney, H. and Troell, M. 2000. Effect of aquaculture on world fish supplies. Nature 405, 1017-1024.   DOI
16 Paredes, D., Kuschk, P., Mbwette, T. S. A., Stange, F., Muller, R. A. and Koser, H. 2007. New Aspects of microbial nitrogen transformations in the context of wastewater treatment- a review. Eng. Life Sci. 7, 13-25.   DOI
17 Neal, R. S., Coyle, S. D. and Tidwell, J. H. 2010. Evaluation of stocking density and light level on the growth and survival of the Pacific White Shrimp, Litopenaeus vannamei, reared in zero-exchange systems. J. World Aquac. Soc. 41, 533-544.   DOI
18 Ouellet-Plamondon, C., Chazarenc, F., Comeau, Y. and Brisson, J. 2006. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecol. Eng. 27(3), 258-264.   DOI
19 Painter, H. A. and Loveless, J. E. 1983. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. Water Res. 17(3), 237-248.   DOI
20 Ray, A. J., Dillon, K. S. and Lotz, J. M. 2011. Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacult. Eng. 45, 127-136.   DOI
21 Rodriguez-Caballero, A., Hallin, S., Pahlson, C., Odlare, M. and Dahlquist, E. 2012. Ammonia oxidizing bacterial community composition and process performance in wastewater treatment plants under low temperature conditions. Water Sci. Technol. 65(2), 197-204.   DOI
22 Schryver, P. D., Crab, R., Defoirdt, T., Boon, N. and Verstraete, W. 2008. The basics of bioflocs technology: the added value for aquaculture. Aquaculture 277, 125-137.   DOI
23 Jang, I. K., Kim, J. S., Cho, K. J. Seo, H. C., Cho, Y. R., Gopalakannan, A. and Kim, B. L. 2008. Intensive culture of the pacific white shrimp Litopenaeus vannamei under limited water exchange. I. Indoor nursery culture of postlarvae. J. Aquaculture 21(4), 339-345.
24 Kim, D. J., Lee, D. I. and Keller, J. 2006. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour. Technol. 97(3), 459-468.   DOI
25 Jang, I. K., Kim, J. S., Seo, H. C. and Cho, K. J. 2009. Intensive culture of the pacific white shrimp Litopenaeus vannamei under limited water exchange. II. Indoor post-nursery culture of juvenile shrimp. J. Aquaculture 22(1), 42-50.
26 Jones, G. L. and Paskins, A. R. 1982. Influence of high partial pressure of carbon dioxide and/or oxygen on nitrification, J. Chem. Technol. Biotechnol. 32(1), 213-223.   DOI
27 Naylor, R. L., Goldburg, R. J., Mooney, H., Beveridge, M., Clay, J., Folke, C., Kautsky, N., Lubchenco, J., Primavera, J. and Williams, M. 1998. Nature's subsidies to shrimp and salmon farming. Science 282, 883-884.   DOI
28 Kamstra, A., van derHeul, J. W. and Nijhof, M. 1998. Performance and optimization of trickling filters on eel farms. Aquacult. Eng. 17, 175-192.   DOI
29 Lazur, A. M. and Britt, D. C. 1997. Pond recirculating production systems. SRAC Publication No. 455. USDA, 8 pp.
30 Martins, A. M. P., Heijnen, J. J. and van Loosdrecht, M. C. M. 2003. Effect of dissolved oxygen concentration on sludge settleability. Appl. Microbiol. Biotechnol. 62, 586-593.   DOI
31 Glass, M. L., Andersen, N. A., Kruhoffer, M., Williams, E. M. and Heisler, N. 1990. Combined effects of environmental PO2 and temperature on ventilation and blood gases in the carp Cyprinus carpio L. J. Exp. Biol. 148, 1-17.
32 Groeneweg, J., Sellner, B. and Tappe, W. 1994. Ammonia oxidation in Nitrosomonas at NH3 concentrations near Km: effects of pH and temperature. Water Res. 28, 2561-2566.   DOI
33 He, Y., Tao, W., Wang, Z. and Shayya, W. 2012. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands. J. Environ. Manage. 110, 103-109.   DOI
34 Gu, S. B., Wang, S. Y., Yang, Q., Yang, P. and Peng, Y. Z. 2012. Start up partial nitrification at low temperature with a real-time control strategy based on blower frequency and pH. Bioresour. Technol. 112, 34-41.   DOI
35 Gutierrez-Wing, M. T. and Malone, R. F. 2006. Biological filters in aquaculture: trends and research directions for freshwater and marine applications. Aquacult. Eng. 34(3), 163-171.   DOI
36 Ilies, P. and Mavinic, D. S. 2001. The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia landfill leachate. Water Res. 35, 2065-2072.   DOI
37 Hari, B., Kurup, B. M., Varghese, J. T., Schrama, J. W. and Verdegem, M. C. J. 2006. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture 252, 248-263.   DOI
38 Herbert, R. A. 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol. Rev. 23, 563-590.   DOI
39 Huntingford, F. A., Adams, C., Braithwaite, V. A., Kadri, S., Pottinger, T. G., Sandoe, P. and Turnbull, J. F. 2006. Current issues in fish welfare. J. Fish Biol 68, 332-372.   DOI
40 Davis, J. C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Board Can. 32(12), 2295-2332.   DOI
41 Ford, T. and Beitinger, T. L. 2005. Temperature tolerance in the goldfish, Carassius auratus. J. Therm. Biol 30, 147-152.   DOI
42 Emerenciano, M., Ballester, E. L. C., Cavalli, R. O. and Wasielesky, W. 2012. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquacult. Res. 43, 447-457.   DOI
43 Eng, C. T., Paw, J. N. and Guarin, F. Y. 1989. The environmental impact of aquaculture and the effects of pollution on coastal aquaculture development in southeast Asia. Mar. Pollut. Bull. 20, 335-343.   DOI
44 FAO. 2013. Yearbook of fishery statistics summary tables. (ftp://ftp.fao.org/FI/STAT/summary/default.htm)
45 Bovendeur, J., Zding, G. H. and Henken, A. M. 1987. Design and performance of a water recirculation system for high-density culture of the African Catfish, Clazias gariepinus (Burchell, 1822). Aquaculture 63, 329-353.   DOI
46 Funge-Smith, S. and Phillips, M. J. 2001. Aquaculture systems and species. In: Subasinghe, R. P., Bueno, P., Phillips, M. J., Hough, C., McGladdery, S. E., Arthur, J. R. (Eds.), Technical proceedings of the conference on aqquaculture in the third millennium, Bangkok, Thailand, February 20-25, 2000. NACA/FAO, Bangkok/Rome, pp. 129-135.
47 Furtado, P. S. Poersch, L. H. and Wasielesky Jr, W. 2011. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture 321, 130-135   DOI
48 Gerardi, M. H. 2002. Nitrification and denitrification in the activated sludge process. publication by John Wiley and Sons, Inc., New York.
49 Chen, S., Ling, J. and Blancheton, J. P. 2006. Nitrification kinetics of biofilm as affected by water quality factors. Aquacult. Eng. 34, 179-197.   DOI
50 Boyd, C. E. 2003. Guidelines for aquaculture effluent management at the farm-level. Aquaculture 226, 101-112.   DOI
51 Buckling, R. A., Baird, C. D., Watson, C. A. and Chapman, F. A. 1993. Energy use of recycling water aquaculture systems for ornamental fish production. Circular 1095. Florida Cooperative Extension Service. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 5 pp.
52 Burford, M. A., Thompson, P. J., McIntosh, R. P., Bauman, R. H. and Pearson, D. C. 2003. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 219, 393-411.   DOI
53 Crab, R., Kochva, M., Verstraete, W. and Avnimelech, Y. 2009. Bio-flocs technology application in over-wintering of tilapia. Aquacult. Eng. 40, 105-112.   DOI
54 Colt, J. 2006. Water quality requirements for reuse systems. Aquacult. Eng. 34, 143-156.   DOI
55 Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P. and Verstraete, W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270, 1-14.   DOI
56 Crab, R., Defoirdt, T., Bossier, P. and Verstraete, W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 356-357, 351-356.   DOI
57 Avnimelech, Y. 2006. Bio-filters: The need for a new comprehensive approach. Aquacult. Eng. 34, 172-178.   DOI
58 Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture 264, 140-147.   DOI
59 Azim, M. E., Little, D. C. and Bron, J. E. 2008. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresour. Technol. 99, 3590-3599.   DOI
60 Avnimelech, Y. and Kochba, M. 2009. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture 287, 163-168.   DOI
61 Avnimelech, Y. (ed.). 2009. Biofloc Technology - A Practical Guide Book, Second Edition. World Aquaculture Society, Baton Rouge, Louisiana, US.
62 Avnimelech, Y. 2012. Bioflocs technology - A Practical Guide Book, 2nd ed. The World Aquaculture Society, Baton Rouge, LA, USA 27-43.
63 Antoniou, P., Hamilton, J., Koopman, B., Jain, R., Holloway, B., Lyberatos, G. and Svoronos, S. A. 1990. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria, Water Res. 24(1), 97-101.   DOI
64 Benyahia, F. and Polomarkaki, R. 2005. Mass transfer and kinetic studies under no cell growth conditions in nitrification using alginate gel immobilized Nitrosomonas. Process Biochem. 40(3-4), 1251-1262.   DOI
65 Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176, 227-235.   DOI
66 Bothe, H., Jost, G., Schloter, M. Ward, B. B. and Witzel, K. P. 2000. Molecular analysis of ammonia oxidation and denitrifiation in natural environments. FEMS Microbiol. Rev. 24, 673-690   DOI
67 APHA. 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. Washington, DC: American Public Health Association.
68 Van Wyk, P. and Scarpa, J. 1999. Water quality and management. In: Van Wyk, P., et al. (Ed.), Farming Marine Shrimp in Recirculating Freshwater Systems. Florida department of agriculture and consumer services, Tallahassee, 128-138.