• Title/Summary/Keyword: $NH_4VO_3$

Search Result 20, Processing Time 0.023 seconds

Preparation and Catalytic Properties of Vanadium-Containing MFI Type Zeolite (바나듐 함유 MFI형 제올라이트의 제조 및 촉매적 특성)

  • Kim, Geon Joong;Ko, Wan Suk;Cho, Byung Rin
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.361-372
    • /
    • 1994
  • Vanadium containing MFI type zeolites have been prepared hydrothermally or by the impregnation method with $NH_4VO_3$ solution after dealumination of HZSM-5. Incorporation of vanadium into the framework of zeolite has been demonstrated by XRD, DTA, FT-IR and ESR analyses. Upon $NH_4VO_3$ impregnation and calcination of dealuminated zeolite, vanadium substitution into the framework could be performed like a hydrothermally synthesized zeolite. Vanadium in zeolite is able to pass redox cycles at high temperatures, and it is shown that vanadium is probably fixed and atomically dispersed in the structure of zeolite. The catalytic benzene hydroxylation, hexanes and alcohols oxidation were used for evaluating the properties of vanadium incorporated MFI zeolite.

  • PDF

Leaching and precipitation of Vanadium in ammoniacal solution (암모니아 용액중(溶液中)에서 바나듐의 용해(溶解)와 침전거동(沈澱擧動))

  • Park, Kyung-Ho;Kim, Hong-In;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.38-42
    • /
    • 2008
  • This study was carried out to investigate the solubility of vanadium in ammoniacal solution and precipitation of $NH_4VO_3$ as a function of temperature and addition of ammonia salt. Higher solution temperature is required to get high solubility of vanadium and the vanadium concentration of solution was 16.8g/L at $90^{\circ}C$ with the solution of 20 g/L $(NH_4)_2CO_3$ and 2.5M $NH_4OH$. From this solution, vanadium could be precipitated up to 99.8% with adding 20 g/L $NH_4Cl$, 72 hours settling time at $25^{\circ}C$.

Hydrothermal Synthesis of Metal-doped BiVO4 Powder and its Thermochromic Properties (금속이 도핑된 BiVO4 분말의 수열 합성 및 이의 열 변색 특성)

  • Wu, Guan Zhu;Son, Dae Hee;Jin, Young Eup;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.681-685
    • /
    • 2015
  • In this study, pure $BiVO_4$ powder and metal-doped $M-BiVO_4$ (M = Mg, Cu) powder, well known as thermochromic materials, were prepared from a mixed aqueous solution of bismuth nitrate ($Bi(NO_3)_3$) and ammonium vanadate ($NH_4VO_3$) in autoclave by hydrothermal method. The crystal structure, microstructure, and thermochromic property of samples were analyzed using FE-SEM, FT-IR, XRD, DSC, UV-Vis-NIR spectroscopy and colorimeter. When heating samples above phase transition temperature, the color of $M-BiVO_4$ (M = Mg, Cu) sample was thermally changed more clearly than that of using only pure $BiVO_4$ sample.

X-Ray and NMR Studies of Vanadium(V)-Nitrilotriacetate Complex (바나듐(V)-니크릴로트리아세테이트 착물의 X-선 및 핵자기공명 연구)

  • Lee, Man-Ho;Jeong, Woo-Won
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.196-202
    • /
    • 1997
  • New vanadium(V) complex, $(NH_4)_2[VO_2NTA]$, has been synthesized and its structure has been determined by solution and solid-state NMR spectroscopies as well as X-ray crystallography. The unit cell of the monoclinic crystals contains four complexes with $a=6.923(1){\AA}$, $b=8.824(2){\AA}$, $c=19.218(11){\AA}$ and ${\beta}=91.60(3)^{\circ}$ in the space group of $P2_1/n$. The $[VO_2NTA]^{2-}$ anion has distorted octahedral geometry with cis-$VO_2$ moiety. It is confirmed that the octahedral geometry is retained in both of solution and solid-state complexes.

  • PDF

Selective Catalytic Reduction (SCR) Technology Trend for the Removal of Nitrogen Oxide from Ship Flue Gas (선박 배가스 내 질소산화물 제거를 위한 선택적촉매환원법(SCR) 기술동향)

  • Won, Jong Min;Hong, Sung Chang
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.5
    • /
    • pp.25-40
    • /
    • 2019
  • 전 세계적으로 환경문제를 해결하기 위한 방안으로 환경규제를 강화시키며 특히 다양한 대기오염 물질 중 최근 큰 이슈인 초미세먼지 저감을 위해 전구물질로 알려진 질소산화물을 제어하기 위한 다양한 기술개발이 가속화되고 있다. 특히, 다양한 처리기술 중에 기술적·경제적인 이점을 갖춘 선택적 촉매환원법(selective catalytic reduction, SCR) 기술을 통하여 질소산화물 제거를 위해 암모니아를 환원제로 반응에 참여시켜 인체에 무해한 H2O, N2로 전환하는 기술이 대표적이다. 최근 전 세계적으로 다양한 산업군에서 질소산화물이 배출되고 있으며, 점오염원뿐만이 아니라 비점오염원(mobile sources)에 대한 규제가 강화되고 있다. 디젤엔진이 장착된 선박 배가스 처리장치 내 SCR 기술이 주목을 받고 있으며, NH3-SCR에 사용되는 촉매는 주로 VOx/TiO2, VOx/W/TiO2 촉매가 대표적이다. 한편 선박 디젤엔진에 사용되는 연료에 따라 연소배가스 특성이 다르다. 이러한 연료가 연소됨에 따라 SO2, SO3가 발생되고 환원제인 NH3와 결합하여 황산암모늄염((NH4)2SO4), ABS (ammonium bisulfate, NH4HSO4)과 같은 염을 형성시켜 탈질촉매의 비활성화 문제가 발생된다. 이러한 비활성화 물질이 침적된 탈질촉매를 재활성화 시키기 위하여 열 산화를 통해 재생시키고 있다. 이처럼 선박용 SCR 촉매는 강화되는 배출규제 및 엔진기술의 발달로 저감되는 운전 온도에 대비하여 저온 활성 재생이 가능한 고활성, 고내구성 촉매기술 개발이 필요하다.

Studies on the oxygen-Atom-Transfer Reactions of Peroxo Vanadium(Ⅴ) Complexes (Peroxo Vanadium(Ⅴ)화합물들에 의한 산소 원자 전이 반응에 관한 연구)

  • Won, Tae Jin
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.213-218
    • /
    • 2001
  • The reaction of peroxo vanadium(V) complexes, $VO(O_2)_2(pic)^{2-}$, $VO(O_2)(nta)^{2-}$, and $VO(O_2)(dipic)^-$ with thiolato-cobalt(III), $(en)_2Co(SCH_2CH_2NH_2)^{2+}$ resulted in an oxygen-atom transfer in aqueous solutions. Rate constants ($M^{-1}S^{-1}$) for these reactions were (35$\pm$1), $(4.8{\pm}0.4){\times}10^{-2}$ , and $(8.6{\pm}0.5){\times}10^{-4}$, respectively. The coordinate peroxide was activated in the oxygen-atom-transfer reaction of $VO(O_2)_2(pic)^{2-}$, but it is not the case for VO(O$_2$) $(nta)^{2-}$ and VO(O$_2$) $(dipic)^-$. In this paper, we proposed that the direct attack of an electrophilic peroxide to a nucleophilic substrate occurs in the oxygen-atom transfer pathway of peroxo vanadium(V) complexes.

  • PDF

Catalytic Activity of BiVO4-graphene Nanocomposites for the Reduction of Nitrophenols and the Photocatalytic Degradation of Organic Dyes

  • Li, Jiulong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.240-249
    • /
    • 2016
  • $BiVO_4$ nanomaterial was synthesized from bismuth (III) nitrate pentahydrate [$Bi(NO_3)_3{\cdot}5H_2O$] and ammonium vanadate (V) [$NH_4VO_3$]. The $BiVO_4$-graphene nanocomposite was fabricated by calcining the $BiVO_4$ nanomaterial and graphene under an oxygen-free atmosphere at $700^{\circ}C$. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize structural and morphological properties of samples. The catalytic activity of the $BiVO_4$-graphene nanocomposite was studied for the reduction of 4-nitrophenol, 3-nitrophenol and 2-nitrophenol by sodium borohydride [$NaBH_4$]. The photocatalytic activity of the $BiVO_4$-graphene nanocomposite was demonstrated by the degradation of organic dyes like BG, MB, MO and RhB under irradiation at 365 nm. The catalytic and photocatalytic activity were studied by UV-vis spectrophotometry.

Effects of Vanadate Solution Property on the Precipitation of Ammonium (Meta, Poly)Vanadate (바나데이트 수용액 특성이 암모늄(메타, 폴리)바나데이트 침전에 미치는 영향)

  • Ho-Sung Yoon;Seo Jin Heo;Yujin Park;Rina Kim;Chul-Joo Kim;Kyeong Woo Chung;Hong In Kim
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • Good control of the solution pH and temperature is required to recover vanadium from the water leaching solution of vanadium ore after sodium roasting. However, such adjustments could lead to aluminum-vanadium and sodium-vanadium co-precipitation, which greatly affects the efficiency of vanadium recovery. In this study, a process that can increase the efficiency of vanadium recovery as ammonium metavanadate [NH4VO3] and ammonium polyvanadate [(NH4)2V6O16·H2O] was investigated by examining the characteristics of vanadium-containing aqueous solutions during precipitation. The aluminum content of vanadium-containing water leaching solutions has a great effect on the loss of vanadium when the pH of the aqueous solution is adjusted to 9. Therefore, a process to minimize aluminum leaching is also required. In this study, ~99% or more of vanadium present in vanadium-containing aqueous solutions was precipitated and recovered as NH4VO3 by adding 3 equivalents of ammonium chloride relative to the vanadium content at pH 9 and room temperature. (NH4)2V6O16·H2O was precipitated from the aluminum-vanadium coprecipitates generated during the pH-adjustment of the aqueous solutions to 9 by dissolving the coprecipitate in the solutions at pH 2.5 and controlling their sodium content to 2,000 mg/L or less. Approximately, 98% or more of the available (NH4)2V6O16·H2O could be precipitated and recovered from a solution with a vanadium content of 2,200 mg/L and a sodium content of 1,875 mg/L at pH 2.5 by adding approximately 3 equivalents of ammonium chloride relative to the vanadium content at 95℃ or higher. The overall process could precipitate and recover, approximately 91% or more of the total vanadium in the water leaching solution as NH4VO3 and (NH4)2V6O16·H2O.

Thermal Decomposition of Ammonium Salts of Transition Metal Oxyacids. V. Study on the Thermal Decomposition of Ammonium Metavanadate (전위금속의 산소산염의 열분해에 관한 연구 (제5보) Ammonium Metavanadate의 열분해에 따르는 $V_2O_5$의 생성)

  • Il-Hyun Park
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-165
    • /
    • 1972
  • Thermal decomposition of ammonium metavanadate has been investigated by using the quartz spring balance and differential thermal analysis. It showed that the decomposition of ammonium metavanadate is proceeded at two stages which correspond to $180^{\circ}C-220^{\circ}C$ and $310^{\circ}C-330^{\circ}C$ decomposition temperatures, respectively. Evolved ammonia gas in thermal decomposition has been analyzed quantitatively by titration. And the constituents of gases evolved have been evaluated by gas chromatography and omegatron spectrometer. From these results, it was concluded that the gases evolved in the first step decomposition were $NH_3$ and $H_2O$ with 2:1 ratio and the second step decomposition corresponded to the formation of $NH_3$, $H_2O$ and $N_2O$ which was produced in oxidation of $NH_3$ by $V_2O_5$. The decomposition products were identified by means of X-ray diffraction method. The decomposition product in air was V_2O_5 and the product in vacuum $V_3O_7.$ The kinetics of the thermal decomposition was studied, giving the values of the activation energy of 41.4 kcal/mole and 64.4 (kcal/mole) respectively.

  • PDF

Precipitation Behavior of Ammonium Vanadate from Solution Containing Vanadium (바나듐 함유 수용액의 암모늄바나데이트 침전거동 고찰)

  • Yoon, Ho-Sung;Chae, Sujin;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Minseuk
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.42-50
    • /
    • 2019
  • In this study, the precipitation reaction of vanadium and ammonium chloride in aqueous solution was investigated in order to recover vanadium. Ammonium metavanadate having a crystal structure of [$NH_4VO_3$] was precipitated from aqueous solution containing vanadium at pH 9.2 ~ 9.4, and ammonium polyvanadate having a crystal structure of [$(NH_4)_2V_6O_{16}$] was precipitated when the pH of the aqueous solution containing vanadium was adjusted with sulfuric acid. Ammonium polyvanadate [$(NH_4)_2V_6O_{16}$] precipitated at a temperature of $80{\sim}90^{\circ}C$ and pH 2, and at a temperature of $40^{\circ}C$ and pH 6 ~ 8 of aqueous solution. In the acidic region of aqueous solution pH 2, the vanadium content of the aqueous solution should be at least 3,000 mg/L and the precipitation temperature should be maintained at $80^{\circ}C$ or higher in order to obtain a precipitation ratio of 99% or more. When the ammonium vanadate was precipitated in the alkaline region, the vanadium content was more than 10,000 mg/L and the precipitation temperature was maintained at $40^{\circ}C$ to increase the precipitation ratio. Aluminum was not precipitated regardless of the vanadium content and pH of the aqueous solution. However, the iron component reacts with ammonium chloride to precipitate into ammonium jarosite. Therefore, Fe component must be preferentially removed in order to increase the recovery of vanadium.