• 제목/요약/키워드: $NF-_{k}B$

검색결과 1,700건 처리시간 0.04초

RAW264.7 Macrophage Cell에서 녹차씨껍질 에틸아세테이트 분획의 염증억제 효과 및 기전 연구 (Suppressive Effect of Green Tea Seed Coat Ethyl Acetate Fraction on Inflammation and Its Mechanism in RAW264.7 Macrophage Cell)

  • 노경희;장지현;민관희;친조리그 라드나바자르;이미옥;송영선
    • 한국식품영양과학회지
    • /
    • 제40권5호
    • /
    • pp.625-634
    • /
    • 2011
  • 본 연구는 녹차씨껍질 분획 추출물 중 염증 저해능이 강력한 EtOAC분획을 선정하여 대식세포주인 RAW264.7 macrophage cell에서 항염증효과의 기전을 생화학적, 분자학적수준에서 분석하고자 하였다. 녹차씨껍질 추출물 100 mg당 총 페놀함량은 EtOAC분획에서 가장 높은 수준이었으며 EtOH추출물>PE분획>BuOH분획과 $H_2O$분획의 순으로 나타났다. 또한 EtOAC분획의 NO 억제능이 가장 강한 것으로 나타나, EtOAC분획의 polyphenol을 분석한 결과 EGC ($1146.5{\pm}11.01\;{\mu}g/g$)> tannic acid($967.0{\pm}32.24\;{\mu}g/g$)> EC ($70.9{\pm}4.39\;{\mu}g/g$)> gallic acid($947.6{\pm}1.03\;{\mu}g/g$)> caffeic acid($37.7{\pm}1.46\;{\mu}g/g$)> ECG($35.5{\pm}3.19\;{\mu}g/g$)> EGCG($15.5{\pm}0.09\;{\mu}g/g$)의 순으로 나타났다. 녹차씨껍질 EtOAC분획이 RAW264.7 macrophage cell에서 LPS 처리에 의한 산화적 스트레스로 발생되는 NO 생성을 농도 의존적으로 감소시키며($IC_{50}$: $80.11\;{\mu}g/mL$) $PGE_2$의 생성을 억제하였다. 염증생성 전사인자인 iNOS의 유전자 발현은 농도 의존적으로 억제시켰으나 COX-2의 단백질 발현에는 영향을 미치지 않았다. 녹차씨껍질 EtOAC분획은 총 항산화능과 GSH 수준을 증가시켜 산화적 스트레스를 경감시키는 역할을 하며 항산화효소계인 catalase, GSH-red 및 Mn-SOD 활성의 단백질 발현을 증가시키는 것으로 나타났다. 핵에서의 p65 농도는 대조군에 비해 녹차씨껍질 EtOAC분획을 처리한 군에서 현저하게 낮은 것으로 나타났다. 이상의 결과에서, 녹차씨껍질 EtOAC분획은 NF-${\kappa}B$ 활성을 억제함으로써 iNOS 단백질 발현을 억제하여 NO의 생성을 감소시키고 총 항산화능과 GSH 수준을 증가시키며, 항산화 효소계를 활성화시켜 세포내 산화적 스트레스를 감소시킴으로써 LPS 자극에 의한 염증반응을 지연하거나 억제하는 것으로 사료된다.

상기생 추출물이 파골세포 분화와 골흡수 억제에 미치는 효과 (Inhibition Effect of Taxilli Ramulus Extract on Osteoclast Differentiation and Bone Resorption)

  • 백종민;김주영;이명수;정우진;문서영;전병훈;오재민;최민규
    • 동의생리병리학회지
    • /
    • 제27권4호
    • /
    • pp.431-436
    • /
    • 2013
  • Bone homeostasis is maintained by co-ordination of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between osteoclasts and osteoblasts leads to many bone diseases such as osteoporosis, rheumatoid arthritis. Taxillus chinensis is a herb that has been widely used to improve bone health. However, the effect and mechanism of Taxillus chinensis extract on osteoclast differentiation and bone resportion has been unknown. Thus, We investigated the effect of Taxillus chinensis on expression of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation and bone resorption. Also, the action of Taxillus chinensis on mechanisms relating to osteoclast differentiation was studied. In this results, we identified that Taxillus chinensis significantly inhibited RANKL-induced osteoclast differentiation and bone resportion. Moreover, Taxillus chinensis was suppressed the activation of NF-${\kappa}B$ in bone marrow macrophage treated RANKL and M-CSF. Taxillus chinensis was down-regulated the mRNA expression of c-Fos, nuclear factor of activated T-cells (NFAT)c1, osteoclast-associated receptor (OSCAR), tartrate-resistant acid phosphatase (TRAP). The cell adhesion-related molecules such as integrin ${\alpha}v$ and integrin ${\beta}3$, and the filamentous actin (F-actin) rings of mature osteoclasts-related molecules such as dendritic cell-specific transmembrane preotein (DC-STAMP) and cathepsin K are also suppressed. Taken together, these results indicated that Taxillus chinensis will be a good candidate to treat osteoclast-mediated bone diseases.

Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes

  • Yeo, Hyunjin;Lee, Jeong Yeon;Kim, JuHwan;Ahn, Sung Shin;Jeong, Jeong You;Choi, Ji Hye;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.323-328
    • /
    • 2020
  • Matrix metalloproteinase 1 (MMP-1), a calcium-dependent zinccontaining collagenase, is involved in the initial degradation of native fibrillar collagen. Tissue necrosis factor-alpha (TNFα) is a pro-inflammatory cytokine that is rapidly produced by dermal fibroblasts, monocytes/macrophages, and keratinocytes and regulates inflammation and damaged-tissue remodeling. MMP-1 is induced by TNFα and plays a critical role in tissue remodeling and skin aging processes. However, the regulation of the MMP1 gene by TNFα is not fully understood. We aimed to find additional cis-acting elements involved in the regulation of TNFα-induced MMP1 gene transcription in addition to the nuclear factor-kappa B (NF-κB) and activator protein 1 (AP1) sites. Assessments of the 5'-regulatory region of the MMP1 gene, using a series of deletion constructs, revealed the requirement of the early growth response protein 1 (EGR-1)-binding sequence (EBS) in the proximal region for proper transcription by TNFα. Ectopic expression of EGR-1, a zinc-finger transcription factor that binds to G-C rich sequences, stimulated MMP1 promoter activity. The silencing of EGR-1 by RNA interference reduced TNFα-induced MMP-1 expression. EGR-1 directly binds to the proximal region and transactivates the MMP1 gene promoter. Mutation of the EBS within the MMP1 promoter abolished EGR-1-mediated MMP-1 promoter activation. These data suggest that EGR-1 is required for TNFα-induced MMP1 transcriptional activation. In addition, we found that all three MAPKs, ERK1/2, JNK, and p38 kinase, mediate TNFα-induced MMP-1 expression via EGR-1 upregulation. These results suggest that EGR-1 may represent a good target for the development of pharmaceutical agents to reduce inflammation-induced MMP-1 expression.

백하수오(白何首烏) 물 추출물의 파골세포 분화에 미치는 영향 (Effect of Water Extract of Cynanchi Wilfordii Radix in RANKL-induced Osteoclast Differentiation)

  • 안용환;오재민;이명수;정종혁;채수욱;문서영;전병훈;최민규
    • 동의생리병리학회지
    • /
    • 제26권2호
    • /
    • pp.160-165
    • /
    • 2012
  • Osteoporotic fracture became a serious social problem, which related with mortality and morbidity in old age population. Osteoclast which is responsible for bone resorption is originated from hematopoietic cell line and plays a key role osteoporotic bone loss. Cynanchum wilfordii (Asclepiadaceae) roots have been used in Korean folk medicine for the treatment of diabetes mellitus and aging progression. Also, recent studies have shown that the extract and fractions of Cynanchi Wilfordii Radix have various pharmacological actions including scavenging free radicals, enhancing immunity, reducing high serum cholesterol, and anti-tumor activity. However, the effect of extract of Cynanchi Wilfordii Radix in osteoclast differentiation had not been reported. Thus, we evaluated the effect of Cynanchi Wilfordii Radix on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Through our study, we found that Cynanchi Wilfordii Radix significantly inhibited osteoclast differentiation induced by RANKL. Cynanchi Wilfordii Radix suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Cynanchi Wilfordii Radix significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Cynanchi Wilfordii Radix inhibited the protein expression of c-fos and NFATc1. Taken together, our results demonstrated that Cynanchi Wilfordii Radix may be useful treatment option of bone-related disease such as osteoporosis leads to fracture of bone and rheumatoid arthritis.

Growth Inhibitory Effect of (E)-2,4-bis(p-hydroxyphenyl)-2-Butenal Diacetate through Induction of Apoptotic Cell Death by Increasing DR3 Expression in Human Lung Cancer Cells

  • Lee, Ung-Soo;Ban, Jung Ok;Yeon, Eung Tae;Lee, Hee Pom;Udumula, Venkatareddy;Ham, Young Wan;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.538-543
    • /
    • 2012
  • The Maillard Reaction Products (MRPs) are chemical compounds which have been known to be effective in chemoprevention. Death receptors (DR) play a central role in directing apoptosis in several cancer cells. In our previous study, we demonstrated that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal, a MRP product, inhibited human colon cancer cell growth by inducing apoptosis via nuclear factor-${\kappa}B$ (NF-${\kappa}B$) inactivation and $G_2$/M phase cell cycle arrest. In this study, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate, a new (E)-2,4-bis(p-hydroxyphenyl)-2-butenal derivative, was synthesized to improve their solubility and stability in water and then evaluated against NCI-H460 and A549 human lung cancer cells. (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate reduced the viability in both cell lines in a time and dose-dependent manner. We also found that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate increased apoptotic cell death through the upregulation of the expression of death receptor (DR)-3 and DR6 in both lung cancer cell lines. In addition to this, the transfection of DR3 siRNA diminished the growth inhibitory and apoptosis inducing effect of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate on lung cancer cells, however these effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate was not changed by DR6 siRNA. These results indicated that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal diacetate inhibits human lung cancer cell growth via increasing apoptotic cell death by upregulation of the expression of DR3.

Snake Venom synergized Cytotoxic Effect of Natural Killer Cells on NCI H358 Human Lung Cancer Cell Growth through Induction of Apoptosis

  • Oh, Jae Woo;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제33권2호
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives : I investigated whether snake venom can synergistically strengthen the cytotoxic effects of NK-92 cells, and enhance the inhibition of the growth of lung cancer cells including NCI-H358 through the induction of death receptor dependent extrinsic apoptosis. Methods : Snake venom toxin inhibited cell growth of NCI-H358 Cells and exerted non influence on NK-92 cell viability. Moreover, when they were co-cultured with NK cells and concomitantly treated with $4{\mu}g/m{\ell}$ of snake venom toxin, more influence was exerted on the inhibition of growth of NCI-H358 cells than BV or NK cell co-culture alone. Results : The expression of Fas, TNFR2 and DR3 and in NCI-H358 lung cancer cells was significantly increased by co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells alone. Coincidentally, Bax, caspase-3 and caspase-8 - expressions of pro-apoptotic proteins in the extrinsic apoptosis pathway, demonstrated significant increase. However, in anti-apoptotic NF-${\kappa}B$ activities, activity of the signal molecule was significantly decreased by co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells or snake venom toxin treated by NCIH358 alone. Meanwhile, in terms of NO generation, there is a significant increase, in co-culture of NK-92 cells with NCI-H358 cells as well as the co-culture of NK-92 cells and concomitant treatment of $4{\mu}g/m{\ell}$ of snake venom toxin. However, no synergistic increase of NO generation was shown in co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells with NCI-H358 cells. Conclusion : Consequently, this data provides that snake venom toxin could be useful candidate compounds to suppress lung cancer growth along with the cytotoxic effect of NK-92 cells through extrinsic apoptosis.

궤양성 대장염 유발 생쥐에 투여한 계지가용골모려탕의 치료효과 (Therapeutic Effects of Gaejigayonggolmoryo-tang on Dextran Sodium Sulfate-induced Ulcerative Colitis in Mice)

  • 강아미;임성우
    • 대한한방내과학회지
    • /
    • 제38권6호
    • /
    • pp.1021-1034
    • /
    • 2017
  • Objectives: The aim of this study was to investigate the effects of Gaejigayonggolmoryo-tang (GYT) on ulcerative colitis induced by dextran sodium sulfate (DSS) in mice. Methods: Colitis was induced by free drinking of 5% DSS in six-week-old male ICR mice. The experimental groups were the sample group, the control group, and the normal group. The sample group was treated with GYT for three days after being was given 5% DSS for five days. The control group was given water, instead of GYT, for three days after the five days of 5% DSS. The normal group was untreated (not given 5% DSS), for comparison purposes. Results: Cellular experiments showed that GYT inhibits the expression of the inflammatory enzymes COX-2 and iNOS, and the production of NO. Based on the primary cellular experiments, the effects of GYT on ulcerative colitis induced by DSS of mouse tissues were investigated. GYT reduced tissue damage and apoptosis by inhibiting the expression of the inflammatory enzymes $NF-{\kappa}B$ p65, COX-2, and iNOS. In the cellular experiment, GYT was more effective in inhibiting the expression of COX-2 than in inhibiting the expression of iNOS. GYT was evidently effective in tissues in inhibiting the expression of COX-2. Conclusions: Based on the results here, GYT may have therapeutic effects on ulcerative colitis induced by DSS. GYT is worthy of research and development as a COX-2 inhibitor and a potential drug for inflammatory bowel diseases from natural products. Further investigations for exact mechanisms will be needed.

Anti-inflammation effect of Exercise and Korean red ginseng in aging model rats with diet-induced atherosclerosis

  • Lee, Jin;Cho, Joon-Yong;Kim, Won-Kyu
    • Nutrition Research and Practice
    • /
    • 제8권3호
    • /
    • pp.284-291
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The aim of this study was to investigate the effects of exercise (EX) and Korean red ginseng (KRG) on inflammation mechanism in aging model rats with diet-induced atherosclerosis. MATERIALS/METHODS: Forty-eight male Sprague-Dawley rats were divided into 6 groups: Young control (Y-C), Aging control (A-C), A-C with HFD (AHF), AHF with EX (AHF-EX), AHF-EX with KRG (AHF-EX+RG), and AHF with KRG (AHF-RG). Aging was induced by D-gal (100mg/kg) and atherosclerosis was induced by HFD (60% fat) for 9 weeks. The experimental rats were performed swimming (60 min/day, 5 days/week) and supplied KRG orally (dose of 200 mg/kg) for 8 weeks. All rat aorta samples were harvested for biochemical and immunohistochemical analyses. REULTS: The EX and KRG supplementation significantly inhibited body weight and levels of TC, TG, LDL-C, and enhance of HDL-C compared with untreated AHF groups. AHF-EX, AHF-EX+RG, and AHF-RG group showed a decreased plasma CRP and increase plasma NO activities compared to AHF group. In addition, these groups revealed reduced 4-HNE, NF-kB, TNF-, ${\alpha}$, IL-6, COX-2, ICAM-1, VCAM-1 and enhanced eNOS expression in the aorta. CONCLUSION: These results suggest that EX alone, KRG alone, and combined treatment of EX and KRG may be an effective anti-inflammatory therapeutic for the atherosclerosis, possibly acting via the decreased of CRP and pro-inflammation proteins and the increased NO and eNOS.

인삼의 항산화 작용 (Anti-oxidative properties of ginseng)

  • 김은혜;이동권
    • Journal of Ginseng Research
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2009
  • 우리 몸의 많은 기관을 비롯하여 장기들은 반복적이거나 혹은 급성 스트레스를 이겨내지 못하고 만성 스트레스로 이어질 경우 질병이 생기게 된다. 특히 강하고 지속적인 스트레스에 노출되면 뇌의 해마 수지상 세포(hippocampal dendrites)가 위축되거나 크기가 작아진다. 이렇게 스트레스로 인하여 증가된 글루코 코티코이드 호르몬은 뉴런 흥분제인 glutamate를 유도하거나 에너지 대사를 변형시켜 신경 독작용을 일으킨다. 이러한 연속적인 반응은 TNF-$\alpha$ convertase(TACE)를 활성화시켜 TNF-$\alpha$가 분비되도록 하여 전사 조절자인 NF-${\kappa}B$가 핵내로 전이되고 신경 손상을 일으키는 iNOS와 COX-2와 같은 효소를 유도한다. 이런 산화적 스트레스의 상위조절인자 TACE는 스트레스에 의한 여러 가지 염증성 질환 및 숙주방어에서 가장 중요한 조절자인 TNF-alpha를 수용체로부터 "유리(shedding)" 시키는 역할을 한다. 따라서 이런 신호 전달계를 자극하는 TACE의 발현 양과 이로 인한 지속적인 처리과정이 중요한 문제로 대두되고 있다. 특히 여러 스트레스 중에서 고정화 스트레스 및 신체적 구속 스트레스에 대한 연구는 뇌에서 산화물 생성을 증가시키지만 인삼이 뇌의 산화물질 생성에 어떤 영향을 미치는지 체계적인 연구가 진행된 바 없다. 따라서 염증을 매개하는 TNF-alpha의 생산에 중요한 역할을 하는 TACE의 발현 조절 및 TNF-alpha 신호전달을 연구함으로써 인삼의 항산화 기전을 분자 수준에서 규명할 수 있게 될 것으로 기대된다.

A Proteomics Based Approach Reveals Differential Regulation of Visceral Adipose Tissue Proteins between Metabolically Healthy and Unhealthy Obese Patients

  • Alfadda, Assim A.;Masood, Afshan;Al-Naami, Mohammed Y.;Chaurand, Pierre;Benabdelkamel, Hicham
    • Molecules and Cells
    • /
    • 제40권9호
    • /
    • pp.685-695
    • /
    • 2017
  • Obesity and the metabolic disorders that constitute metabolic syndrome are a primary cause of morbidity and mortality in the world. Nonetheless, the changes in the proteins and the underlying molecular pathways involved in the relevant pathogenesis are poorly understood. In this study a proteomic analysis of the visceral adipose tissue isolated from metabolically healthy and unhealthy obese patients was used to identify presence of altered pathway(s) leading to metabolic dysfunction. Samples were obtained from 18 obese patients undergoing bariatric surgery and were subdivided into two groups based on the presence or absence of comorbidities as defined by the International Diabetes Federation. Two dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was carried out. A total of 28 proteins were identified with a statistically significant difference in abundance and a 1.5-fold change (ANOVA, $p{\leq}0.05$) between the groups. 11 proteins showed increased abundance while 17 proteins were decreased in the metabolically unhealthy obese compared to the healthy obese. The differentially expressed proteins belonged broadly to three functional categories: (i) protein and lipid metabolism (ii) cytoskeleton and (iii) regulation of other metabolic processes. Network analysis by Ingenuity pathway analysis identified the $NF{\kappa}B$, IRK/MAPK and PKC as the nodes with the highest connections within the connectivity map. The top network pathway identified in our protein data set related to cellular movement, hematological system development and function, and immune cell trafficking. The VAT proteome between the two groups differed substantially between the groups which could potentially be the reason for metabolic dysfunction.