• Title/Summary/Keyword: $NF-{\kappa}B$ (nuclear factor-kappa B)

Search Result 813, Processing Time 0.024 seconds

Inulin stimulates NO synthesis via activation of PKC-$\alpha$ and protein tyrosine kinase, resulting in the activation of NF-$textsc{k}$B by IFN-ν-primed RAW 264.7 cells

  • Koo, Hyun-Na;Hong, Seung-Heon;Kim, Hyung-Min
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.78-78
    • /
    • 2003
  • Inulin, an active component of Chicorium intybus root, has been shown to stimulate the growth of bifidobacteria, and inhibit colon carcinogenesis. NO mediates a number of the host-defense functions of activated macrophages, including antimicrobial and tumoricidal activity. We examined the effect of inulin on the synthesis of NO in RAW 264.7 cells. Inulin alone had no effect, whereas inulin with IFN-ν synergistically increased the NO production and inducible NO synthase (iNOS) expression in RAW 264.7 cells. Synergy between IFN-ν and inulin was mainly dependent on inulin-induced TNF-${\alpha}$ secretion. Also, protein kinase C (PKC)-${\alpha}$ was involved in the inulin-induced NO production. Inulin-mediated NO production was inhibited by the protein tyrosine kinase (PTK) inhibitor, tyrphostin AG126. Since iNOS gene transcriptions have been shown to be under the control of the NF -$\kappa$B/Rel family of transcription factors, we assessed the effect of inulin on NF -$\kappa$B/Rel using an EMSA. Inulin produced strong induction of NF-$\kappa$B/Rel binding, whereas AP-l binding was slightly induced in RAW 264.7 cells. Inulin stimulated phosphorylation and degradation of I$\kappa$B-${\alpha}$. These results suggest that in IFN-ν-primed RAW 264.7 cells inulin might stimulate NO synthesis via activation of PKC-${\alpha}$ and PTK, resulting in the activation of NF-$\kappa$B.

  • PDF

Inhibition of LPS induced iNOS, COX-2 and cytokines expression by salidroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells (Salidroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 불활성화를 통한 LPS에)

  • Won, So-Jung;Park, Hee-Juhn;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • In this study, we investigated the anti-inflammatory effects of salidroside (SAL) isolated from the MeOH extract of Acer tegmentosum Maxim heartwood in RAW 264.7 macrophage cells. SAL pretreatment significantly inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions in the lipopolysaccharide (LPS)-induced RAW 264.7 cells. Western blot and RT-PCR analyses revealed that SAL inhibited the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, SAL reduced the release and the mRNA expressions of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6). Furthermore, nuclear factorkappa B ($NF{-\kappa}B$) luciferase reporter assay was performed to know the involvement of SAL in the production of pro-inflammatory cytokines, we confirmed that LPS-induced transcription activity of $NF{-\kappa}B$ was inhibited by SAL. Taken together, our data indicate that anti-inflammatory property of salidroside might be the result from the inhibition of iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expressions via the down-regulation of $NF{-\kappa}B$ activity.

Anti-inflammatory Effects of Gelidium amansii in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 Gelidium amansii의 항염증 효과)

  • Choi, Won-Sik;Kim, Young-Sun;Lee, Sang-Hyun;Chai, Kyu-Yun;Lee, Young-Haeng
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.673-677
    • /
    • 2009
  • In order to verify the anti-inflammatory effects of Gelidium amansii, RAW264.7 macrophages were incubated with the extract of 70% ethanol solution (Ex), and activated with the endotoxin lipopolysaccharide (LPS). Ex inhibited the expression of the pro-inflammatory enzymes, including inducible nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of iNOS-mediated NO and COX-2-mediated prostglandin $E_2$ ($PGE_2$) production in a dose-dependent manner. Ex also reduced the release of the pro-inflammatory cytokines, including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-1${\beta}$ (IL-1${\beta}$) and IL-6 in LPS-activated macrophages, The observed anti-inflammatory effects of Ex was associated with inactivation of the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) that mediates the induction of iNOS, COX-2, TNF-${\alpha}$, IL-1${\beta}$, and IL-6. Further studies showed that Ex inactivated NF-${\kappa}B$ through inhibition of phosphorylation of the inhibitory ${\kappa}B$ ($l{\kappa}B$), Taken together, these results suggest that Gelidium amansii exerts anti-inflammatory effects by inhibiting the expression of pro-inflammatory enzymes and the secretion of pro-inflammatory cytokines via inactivation of NF-${\kappa}B$ and/or $l{\kappa}B$.

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Activates Pro-Survival Signaling Pathways, Nuclear Factor-${\kappa}B$ and Extracellular Signal-Regulated Kinase 1/2 in Trophoblast Cell Line, JEG-3

  • Ka Hakhyun
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a well-known inducer of apoptotic cell death in many tumor cells. 1RAIL is expressed in human placenta, and cytotrophoblast cells express 1RAIL receptors. However, the role of TRAIL in human placentas and cytotrophoblast cells is not. well understood. In this study a trophoblast cell line, JEG-3, was used as a model system to examine the effect of TRAIL. on key intracellular signaling pathways involved in the control of trophoblastic cell apoptosis and survival JEG-3 cells expressed receptors for 1RAIL, death receptor (DR) 4, DR5, decoy receptor (OcR) 1 and DeR2. Recombinant human TRAIL (rhTRAIL) did not have a cytotoxic effect determined by MIT assay and did not induce apoptotic cell death determined by poly-(ADP-ribose) polymerase cleavage assay. rhTRAIL induced a rapid and transient nuclear translocation of nuclear $factor-{\kappa}B(NF-{\kappa}B)$ determined by immunoblotting using nuclear protein extracts. rhTRAIL rapidly activated extracellular signal-regulated protein kinase (ERK) 1/2 as determined by immnoblotting for phospho-ERK1/2. However, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK) and Akt (protein kinase B) were not activated by rhTRAIL. The ability of 1RAIL to induce $NF-{\kappa}B$ and ERK1/2 suggests that interaction between TRAIL and its receptors may play an important role in trophoblast cell function during pregnancy.

Eriodictyol Inhibits the Production and Gene Expression of MUC5AC Mucin via the IκBα-NF-κB p65 Signaling Pathway in Airway Epithelial Cells

  • Yun, Chawon;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.637-642
    • /
    • 2021
  • In this study, we investigated whether eriodictyol exerts an effect on the production and gene expression of MUC5AC mucin in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with eriodictyol for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of eriodictyol on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated. Eriodictyol suppressed the MUC5AC mucin production and gene expression induced by PMA via suppression of inhibitory kappa Bα degradation and NF-κB p65 nuclear translocation. These results suggest that eriodictyol inhibits mucin gene expression and production in human airway epithelial cells via regulation of the NF-κB signaling pathway.

Involvement of IKK/IkBα/NF-kB p65 Signaling into the Regulative Effect of Engeletin on MUC5AC Mucin Gene Expression in Human Airway Epithelial Cells

  • Hossain, Rajib;Kim, Kyung-il;Li, Xin;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.473-478
    • /
    • 2022
  • In this study, we examined whether engeletin exerts an effect on the gene expression of MUC5AC mucin, in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with engeletin for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of engeletin on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Engeletin suppressed the mRNA expression and production of MUC5AC mucin, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest engeletin inhibits the gene expression of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.

Regulation of the Gene Expression of Airway MUC5AC Mucin through NF-κB Signaling Pathway by Artesunate, an Antimalarial Agent

  • Kyung-il Kim;Rajib Hossain;Jiho Ryu;Hyun Jae Lee;Choong Jae Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.544-549
    • /
    • 2023
  • In this study, artesunate, an antimalarial agent, was investigated for its potential effect on the gene expression of airway MUC5AC mucin. The human pulmonary epithelial NCI-H292 cells were pretreated with artesunate for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of artesunate on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also examined. Artesunate inhibited the glycoprotein production and mRNA expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest artesunate suppresses the gene expression of mucin through regulation of NF-kB signaling pathway, in human pulmonary epithelial cells.

Anti-inflammatory Mechanism of Seaweeds in Murine Macrophage

  • Pan, Cheol-Ho;Kim, Eun-Sun;Um, Byung-Hun;Lee, Jae-Kwon
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.813-817
    • /
    • 2009
  • The effect of 4 seaweed extracts (Desmarestia viridis, Dictyopteris divaricata, Scytosiphon lomentaria, and Ishige okamurae) on pro-inflammatory mediators as well as nuclear factor $(NF)-{\kappa}B$ in the stimulated Raw 264.7 cells was investigated. They reduced iNOS and interlukin $(IL)-1{\beta}$ expressions at transcription level. Of those, 3 extracts (D. divaricata, I. okamurae, and S. lomentaria) inhibited the COX-2 expression at translation level. $I{\kappa}B-{\alpha}$ degradation was inhibited by D. divaricata and S. lomentaria extracts. Therefore, we concluded that the extracts from D. divaricata and S. lomentaria could inhibit the activation of murine macrophage through the blocking of $NF-{\kappa}B$ activation.

Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Estragole is a naturally occurring phenylpropanoid obtained from essential oils found in a broad diversity of plants. Although the phenylpropanoids show many biological activities, clear regulation of the inflammatory signaling pathways has not yet been determined. Here, we scrutinized the anti-inflammatory effect of estragole. The anti-inflammatory effect of estragole was determined through the inhibitory mechanisms of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), and mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Estragole significantly inhibited NO production, iNOS and COX-2 expression as well as LPS-induced $NF-{\kappa}B$ and MAPK activation. Furthermore, estragole suppressed LPS-induced intracellular ROS production but up-regulated the stress response gene HO-1 via the activation of transcription factor Nrf-2. These findings demonstrate that estragole inhibits the LPS-induced expression of inflammatory mediators via the down-regulation of iNOS, COX-2, $NF-{\kappa}B$, and MAPK pathways, as well as the up-regulation of the Nrf-2/HO-1 pathway, indicating that this phenylpropanoid has potential therapeutic and preventive applications in various inflammatory diseases.