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Abstract The effect of 4 seaweed extracts (Desmarestia viridis, Dictyopteris divaricata, Scytosiphon lomentaria, and Ishige
okamurae) on pro-inflammatory mediators as well as nuclear factor (NF)-κB in the stimulated Raw 264.7 cells was
investigated. They reduced iNOS and interlukin (IL)-1β expressions at transcription level. Of those, 3 extracts (D. divaricata,
I. okamurae, and S. lomentaria) inhibited the COX-2 expression at translation level. IκB-α degradation was inhibited by D.
divaricata and S. lomentaria extracts. Therefore, we concluded that the extracts from D. divaricata and S. lomentaria could
inhibit the activation of murine macrophage through the blocking of NF-κB activation.
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Introduction

Seaweeds, primary producers of the oceans, have been
consumed as food, medicine, manure, and fodder since
ancient times. Korean also has eaten either raw or cooked
seaweeds. A couple of reviews focused on the nutritional
aspects of seaweeds as food and their associated health
benefits (1-3). There are a number of papers dealing with
pharmaceutical and medicinal aspects of seaweeds such as
antioxidant (4,5), anti-inflammatory (6-9), antidiabetic
(5,10), and antiviral (11) activity, as well. In case of anti-
inflammatory properties of seaweeds, the active components
were sulfated polysaccharides (6,9), ω-3 polyunsaturated fatty
acids (7), and dichloromethane or ethanol extract (8).
However, little is known about the secondary metabolites
of seaweed showing anti-inflammatory effects.

During the evaluation of the cancer chemopreventive
effects of Korean seaweed extracts by measuring the induction
of phase II detoxification enzymes and the inhibition of
inflammatory responses in vitro, 7 seaweed extracts showed
the promising anti-inflammatory effects through the inhibition
of nitric oxide (NO) and prostaglandin E2 (PGE2) production
(12). Both NO and PGE2 which are synthesized by inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-
2), respectively, have been known to be important mediators
of acute and chronic inflammation (13,14).

Inflammation and infection up-regulate the expression
of several kinds of immune-related proteins in the affected
cells. Pro-inflammatory enzymes such as iNOS and COX-
2 are the part of them. Pro-inflammatory cytokines are
important mediators of inflammation and autoimmune
disease as well. Tumor necrosis factor-α (TNF-α) and
interleukin-1β (IL-1β) are major pro-inflammatory cytokines
produced in macrophages activated by lipopolysaccharides

(LPS) or other bacterial products (15-17). Transcription of
pro-inflammatory mediators such as iNOS, COX-2, TNF-
α, and IL-1β is increased by bacterial endotoxin via the
nuclear factor-κB (NF-κB) activation (18,19). NF-κB is
one of multipotent transcriptional factors and plays a key
role in regulating the immune response including cancer,
inflammatory, and autoimmune diseases (20-23). In resting
cells, NF-κB is localized in cytosol as a homodimer or
heterodimer, which is associated with inhibitor κB protein
(IκB). NF-κB activation is mediated by IκB degradation.
The resulting free NF-κB is translocated into the nucleus
and induces gene transcription through binding to the cis-
acting κB element (24).

In this study, to clarify the mechanism for anti-inflammatory
activities of seaweed extracts, we investigated the anti-
inflammatory effects on the production of pro-inflammatory
mediators as well as the inhibitory effect on NF-κB
activation of the selected seaweed extracts in the stimulated
Raw 264.7 cells.

Materials and Methods

Seaweed extracts The seaweed extracts used for this study
were prepared according to the previous report (12). Briefly, 7
dried seaweed powders, Desmarestia viridis, Dictyopteris
divaricata, Scytosiphon lomentaria, Ishige okamurae,
Desmarestia ligulata, Dictyota coriaceum, and Sargassum
yezoense, were extracted 3 times with 95% ethanol at room
temperature. The ethanol extract was obtained after
evaporation of solvent and the each weight was measured.

Cell culture Raw 264.7 cells were obtained from the
Korean Cell Line Bank (Seoul, Korea). The cells were
maintained at subconfluence in 95% air and 5% CO2

humidified atmosphere at 37oC. Dulbecco’s modified Eagle’s
Medium (DMEM, Hyclone, Logan, UT, USA) was used
for Raw 264.7 cells cultivation. The medium was supplemented
with 10% fetal bovine serum (FBS, Hyclone), penicillin
(100 units/mL), and streptomycin (100 µg/mL).
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Cell viability The cytotoxicity of 7 seaweed extracts was
evaluated using the WST-1-based colorimetric assay
system (Takara Bio Inc., Shiga, Japan). Raw 264.7 cells
(5×104 cells/well) were plated into 96-well plates in
triplicate and stabilized at 37oC for 4 hr. Cells were then
treated with 2 concentrations (20 and 40 µg/mL) of extracts
and incubated for 2 hr. Then, the stimulants [10 µg/mL
LPS and 100 units/mL interferon (IFN)-γ] were added if
necessary and incubated for an additional 24 hr. At that
point, the WST-1 reagent was added to the wells and
incubation was continued for another 3 hr. The level of dye
formed was then measured using a spectrophotometer
(Bio-Rad Laboratories, Hercules, CA, USA) at the
wavelength of 450 nm. The blank value without cells was
subtracted from each experimental value as background.

Semi-quantitative reverse transcription-polymerase
chain reaction (RT-PCR) Raw 264.7 cells were cultured
in the presence of each extract (20 µg/mL) in 6-well plates
(1×106 cells/mL) for 2 hr and the stimulants (10 µg/mL
LPS and 100 units/mL IFN-γ) were put together. After 4
(iNOS) or 6 hr (TNF-α and IL-1β) incubation, total cellular
RNA was isolated using RNeasy mini kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instruction.
Total RNA (1 mg) was reverse-transcribed into cDNA with
AccuPower RT/PCR Premix (Bioneer Co., Daejeon, Korea).
PCR primers used in this study were listed below and were
purchased from Bioneer: sense strand iNOS 5'-CTGCAGC
ACTTGGATCAGGAACCTG-3', anti-sense strand iNOS
5'-GGGAGTAGCCTGTGTGCACCTGGAA-3'; sense strand
TNF-α 5'-GGCAGGTTCTGTCCCTTTCACTC-3', anti-
sense strand TNF-α 5'-CACTTGGTGGTTTGCTACGAC
G-3'; sense strand IL-1β 5'-GCTACCTGTGTCTTTCCCG
TGG-3', anti-sense strand IL-1β 5'-TTGTCGTTGCTTGGT
TCTCCTTG-3'; sense strand β-actin 5'-AGGCTGTGCTG
TCCCTGTATGC-3', ant-sense strand β-actin 5'-ACCCAA
GAAGGAAGGCTGGAAA-3'. For each PCR, the following
sequence was used: preheating at 94oC for 5 min, 94oC for
30 sec, 59oC for 30 sec, and 72oC for 30 sec, with a final
extension phase at 72oC for 7 min. A variable number of
cycles were used to ensure that amplification occurred in
the linear phase. PCR amplification employed β-actin as
the internal control.

Western blot analysis Raw 264.7 cells were treated with
various concentrations (10 and 20µg/mL for COX-2 Western
blot; 20 µg/mL for IκB-α Western blot) of extracts in 6
well plates (1×106 cells/mL) for 2 hr. The culture continued
for 18 hr (COX-2) or for 30 min (IκB-α) after adding the
stimulants (10 µg/mL LPS and 100 units/mL IFN-γ). The
cells were harvested and lysed directly in lysis buffer
(0.5% Triton, 50 mM β-glycerophosphate/pH 7.2, 0.1 mM
sodium vanadate, 2 mM MgCl2, 1 mM ethylene glycol
tetraacetic acid (EGTA), 1 mM dithiothreitol, 0.1 mM
phenylmethylsulfonyl urea, 2 mg/mL leupeptin, and 4 mg/
mL aprotinin). The lysates were resolved by 10% sodium
dodecylsulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred onto nitrocellulose membrane. The
membranes were blocked in Tris-buffered saline (pH 7.4)
containing 0.5% Tween 20, and 5% nonfat dry milk,
incubated with the first specific antibody in blocking
solution for 5 hr, washed, and incubated for 1 hr with the

developing second antibody. The protein bands were
detected by chemiluminescence (Amersham Pharmacia
Biotech, New Brunswick, NJ, USA).

Statistics Statistical analyses of data were performed by
the Student’s t-test to determine statistical significance.
Values are given as mean±standard deviation (SD).

Results and Discussion

Cytotoxicity of 7 different seaweed extracts In the
previous study, 7 seaweed extracts showed the promising
anti-inflammatory effects through the inhibition of NO and
PGE2 production (12). Apparently, the cytotoxicity by
sample treatment can show the same result as such
inhibitory activities. To exclude the case, the cytotoxicity
of seaweed extracts against Raw 264.7 cells was evaluated.
Sometimes, there is a discrepancy between resting (non-
stimulated) and differentiating (stimulated) cells in
cytotoxicity, which may be due to the physiological change
during the differentiation of cells. For the reason, we have
performed the cell viability assay divided into 2 groups
LPS/IFN-γ-stimulated and non-stimulated cells. As shown
in Fig. 1, every seaweed extract was hardly cytotoxic to
normal cells up to the concentration of 40 µg/mL. However,
the extract of D. ligulata (Dl), D. coriaceum (Dc), and S.
yezoense (Sy) showed a serious cytotoxicity to the LPS/
IFN-γ-stimulated cells at the concentration of 40 µg/mL
(Fig. 1). That is why we went forward the further study
with 4 seaweed extracts D. viridis (Dv), D. divaricata
(Dd), S. lomentaria (Sl), and I. okamurae (Io).

Anti-inflammatory activities of 4 different seaweed
extracts To clarify the mechanism for anti-inflammatory
activities of 4 seaweed extracts, we investigated the
production of pro-inflammatory mediators as well as the
inhibitory effect on NF-κB activation of the seaweed
extracts in the stimulated Raw 264.7 cells by RT-PCR and
Western blot analysis. As shown in Fig. 2A, non-activated
cells (untreated) did not express any detectable level of
iNOS, whereas the treatment of LPS/IFN-κ induced high
levels of iNOS transcription. All seaweed extracts reduced
iNOS expression dramatically in the stimulated Raw 264.7
cells, which could explain the marked decrease in NO
production by the 4 seaweed extracts in the previous study
(12) because iNOS is a NO-producing enzyme. However,
all of them did not inhibit the COX-2 expression induced
by LPS/IFN-κ. As shown in Fig. 3A, the effectiveness is
Dd>Io>Sl. Interestingly, Dv did seldom affect the COX-2
expression, although it decreased the PGE2 production by
more than 40% at the concentration of 20 µg/mL in the
previous report (3). In other extracts, the reduced level of
COX-2 expression coincided with the decrease in PGE2

production (12) because COX-2 is a PGE2-producing
enzyme.

In case of pro-inflammatory cytokines (Fig. 2B), 4
seaweed extracts significantly inhibited the LPS/IFN-γ-
induced IL-1β production in Raw 264.7 cells at mRNA
level. However, they did not affect TNF-α transcription at
all. IL-1 is an important part of the inflammatory diseases
such as bacterial infections, autoimmune disorders,
noninfectious hepatitis, asthma, and graft-versus-host
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disease (25). Moreover, IL-1 consistently induces COX-2
gene expression and PGE2 synthesis in several cell lines
and in primary human blood monocytes (26,27). IL-1β
stimulated NO release and iNOS expression as well (28,
29). Taken together, IL-1β has a powerful activity in the
inflammation and therefore specific inhibition activity of
seaweed extracts on IL-1β production, not on TNF-α
production, was considered as an important meaning in
medicinal food.

The expression and production of iNOS, NO, COX-2,
and pro-inflammatory cytokines in macrophages require
the activation of NF-κB (30,31). NF-κB is a mammalian
transcriptional factor regulating various genes that are

important for LPS- and cytokine-induced immunity and
inflammation (32,33). In the present study, we demonstrated
that the extracts from Dd and Sl inhibited LPS/IFN-γ-
induced activation of NF-κB as a consequence of the
inhibition of IκB-α degradation (Fig. 3B). The other
extracts from Dv and Io did not show the inhibition of IκB-
a degradation, although they decreased the transcription
level of iNOS as well as IL-1β (Fig. 2) and especially the
extract of Io inhibited the COX-2 expression as well (Fig.
3 (A)).

We have used 2 stimulants, LPS and IFN-γ, for the
activation of murine macrophage Raw 264.7 cells. LPS
which is recognized by toll-like receptor 4 (TLR4)

Fig. 1. Cytotoxicity of each seaweed extract on Raw 264.7 cells. Values shown are means±SD of 3 independent experiments.
**p<0.01, compared to cells treated with lipopolysaccharides (LPS).

Fig. 2. RT-PCR analysis showing the effect of each seaweed extract on (A) iNOS and (B) pro-inflammatory cytokines
transcription in Raw 264.7 cells.



816 C. -H. Pan et al.

activates NF-κB signaling (34), while IFN-γ binds to its
receptor and activates STAT1 via the phosphorylation by
janus kinase Jak. Activated STAT1 transfers into the
nucleus and induces iNOS transcription (35). In our case,
Dd and Sl inhibited IκB-α degradation suggesting that they
should block the activation pathway by LPS resulting in
the reduced expression of iNOS, COX-2, and IL-1β. In
case of Dv and Io, they may decrease the iNOS expression
via the inhibition of Jak-Stat pathway activated by IFN-γ
that we have not examined yet. To elucidate the action
mechanism of each seaweed extract in detail, we need to
isolate the active component from the extract and investigate
the upstream signal of IκB-α under the stimulation by LPS
alone as well as the Jak-Stat pathways under the stimulation
by IFN-γ alone.

In summary, our results showed that the extracts of Dv,
Dd, Sl, and Io have anti-inflammatory activities in the
activated macrophages. That is, we found that each extract
is a potent inhibitor of the LPS/IFN-γ-induced iNOS,
COX-2, and IL-1β production. We concluded that these 4
seaweeds should be good candidates for the development
of functional food to prevent inflammation.
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