• Title/Summary/Keyword: $NF-{\kappa}B$ (nuclear factor-kappa B)

Search Result 806, Processing Time 0.03 seconds

Inhibition of Homodimerization of Toll-like Receptor 4 by 6-Shogaol

  • Ahn, Sang-Il;Lee, Jun-Kyung;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.211-215
    • /
    • 2009
  • Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B ($NF-{\kappa}B$). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of $NF-{\kappa}B$ activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.

Induction of Prostaglandin E2 by Porphyromonas gingivalis in Human Dental Pulp Cells

  • Kim, So-Hee;Paek, Yun-Woong;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.149-153
    • /
    • 2017
  • Cyclooxygenase-2 (COX-2)-mediated prostaglandin $E_2$ ($PGE_2$) plays a key role in development and progression of inflammatory responses and Porphyromonas gingivalis is a common endodontic pathogen. In this study, we investigated induction of COX-2 and $PGE_2$ by P. gingivalis in human dental pulp cells (HDPCs). P. gingivalis increased expression of COX-2, but not that of COX-1. Increased levels of $PGE_2$ were released from P. gingivalis-infected HDPCs and this $PGE_2$ increase was blocked by celecoxib, a selective COX-2 inhibitor. P. gingivalis activated all three types of mitogen-activated protein kinases (MAPKs). P. gingivalis-induced activation of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) was demonstrated by the results of phosphorylation of $NF-{\kappa}B$ p65 and degradation of inhibitor of ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$). Pharmacological inhibition of each of the three types of MAPKs and $NF-{\kappa}B$ substantially attenuated P. gingivalis-induced $PGE_2$ production. These results suggest that P. gingivalis should promote endodontic inflammation by stimulating dental pulp cells to produce $PGE_2$.

Effect of Prunetin on TNF-${\alpha}$-Induced MUC5AC Mucin Gene Expression, Production, Degradation of $I{\kappa}B$ and Translocation of NF-${\kappa}B$ p65 in Human Airway Epithelial Cells

  • Ryu, Jiho;Lee, Hyun Jae;Park, Su Hyun;Sikder, Md. Asaduzzaman;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.5
    • /
    • pp.205-209
    • /
    • 2013
  • Background: We investigated whether prunetin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced MUC5AC mucin gene expression, production, inhibitory kappa B ($I{\kappa}B$) degradation and nuclear factor kappa B (NF-kB) p65 translocation in human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with prunetin for 30 minutes and then stimulated with TNF-${\alpha}$ for 24 hours or the indicated periods. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The effect of prunetin on TNF-${\alpha}$-induced degradation of $I{\kappa}B$ and translocation of NF-${\kappa}B$ p65 was investigated by western blot analysis. Results: We found that incubation of NCI-H292 cells with prunetin significantly inhibited mucin production and down-regulated the MUC5AC gene expression induced by TNF-${\alpha}$. Prunetin inhibited TNF-${\alpha}$-induced degradation of $I{\kappa}B$ and translocation of NF-${\kappa}B$ p65. Conclusion: This result suggests that prunetin inhibits the NF-${\kappa}B$ signaling pathway, which may explain its role in the inhibition of MUC5AC mucin gene expression and production regulated by the NF-${\kappa}B$ signaling pathway.

The Role of Interleukin 8 and NF(nuclear factor)-κB in Rhinovirus-Induced Airway Inflammation (Rhinovirus 유발성 기도염증반응에서 Interleukin-8과 전사인자 NF(nuclear factor)-κB의 역할에 대한 연구)

  • Yoon, Ho Joo;Kim, Mi Ok;Sohn, Jang Won;Kim, Jung Mogg;Shin, Dong Ho;Park, Sung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.1
    • /
    • pp.104-113
    • /
    • 2003
  • Background : Rhinovirus(RV) infections frequently trigger dyspnea and paroxysmal cough in adult patients with asthma and are the most prevalent cause of the common cold. However, the mechanisms of a RV-induced airway inflammation is unclear. Since the RV does not directly destroy the airway epithelium, it is presumed that the immune response to the RV contributes to the pathogenesis of the respiratory symptoms. In order to test this hypothesis, this study characterized the time-sequenced alterations in interleukin(IL)-8 elaboration from the human bronchial epithelial cells and evaluated the role of NF(nuclear factor)-${\kappa}B$ in the RV-induced IL-8 production by pretreating the inhibitors of NF-${\kappa}B$ activation. Methods : The ability of RV-infected human bronchial epithelial cells and BEAS-2B cells to produce the IL-8 was compared with the controls. This study infected BEAS-2B cells with the RV14 obtained from the American Type Culture Collection. The supernatants were harvested from the RV infected BEAS-2B cells and the controls at 2hr, 4hr, 6hr, 12hr, 24hr, 48hr from the inoculation time. This study measured the IL-8 concentration using the ELISA kits. In order to elucidate the role of NF-${\kappa}B$ in the RV-induced IL-8 production, the effect of the NF-${\kappa}B$ inhibitors was evaluated on RV-induced IL-8 production. Results: The BEAS-2B cells produced small amounts of IL-8 that accumulated slowly with time in the culture. The RV was a potent stimulator of the IL-8 proteins production by BEAS-2B human bronchial epithelial cells. Antioxidants, N-acetyl-L-cysteine(NAC),\ and pyrrolidine dithiocarbamate(PDTC), blocked the IL-8 elaboration by the RV-infected BEAS-2B cells, which was dose-dependent, but N-Tosyl-L-phenylalanine chloromethyl ketone(TPCK) did not. Conclusion: Some antioxidants inhibited the RV-induced IL-8 production by blocking the NF-${\kappa}B$, which may have a therapeutic potential in asthma.

Activity and Expression Pattern of NF-κB/P65 in Peripheral Blood from Hepatocellular Carcinoma Patients - Link to Hypoxia Inducible Factor -1α

  • Gaballah, Hanaa Hibishy;Zakaria, Soha Said;Ismail, Saber Abdelrahman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6911-6917
    • /
    • 2014
  • Background: Hepatocellular carcinoma is a complex and heterogeneous tumor with poor prognosis due to frequent intrahepatic spread and extrahepatic metastasis. The molecular mechanisms underlying HCC pathogenesis still remain obscure. Objectives: We aimed to investigate the abundance and the DNA binding activity of nuclear factor kappa B/p65 subunit in peripheral blood mononuclear cells from patients with HCC and to assess its prognostic significance and association with hypoxia inducible factor one alpha (HIF-$1{\alpha}$) in blood. Subjects and methods: This study was carried out on 40 patients classified equally into liver cirrhosis (group I) and HCC (group II), in addition to 20 healthy volunteers (group III). All groups were subjected to measurement of NF-${\kappa}B$/P65 subunit expression levels by real time-PCR, and DNA binding activity was evaluated by transcription factor binding immunoassay. Serum HIF-$1{\alpha}$ levels were estimated by enzyme-linked immunosorbent assay (ELISA). Significant increase of both the expression level and DNA binding activity of NF-${\kappa}B$/P65 subunit together with serum HIF-1 alpha levels was noted in HCC patients compared to liver cirrhosis and control subjects, with significant positive correlation with parameters for bad prognosis of HCC. In conclusion, NF-${\kappa}B$ signaling is activated in HCC and associated with disease prognosis and with high circulating levels of HIF-1 alpha.

Computational Drug Discovery Approach Based on Nuclear Factor-κB Pathway Dynamics

  • Nam, Ky-Youb;Oh, Won-Seok;Kim, Chul;Song, Mi-Young;Joung, Jong-Young;Kim, Sun-Young;Park, Jae-Seong;Gang, Sin-Moon;Cho, Young-Uk;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4397-4402
    • /
    • 2011
  • The NF-${\kappa}B$ system of transcription factors plays a crucial role in inflammatory diseases, making it an important drug target. We combined quantitative structure activity relationships for predicting the activity of new compounds and quantitative dynamic models for the NF-${\kappa}B$ network with intracellular concentration models. GFA-MLR QSAR analysis was employed to determine the optimal QSAR equation. To validate the predictability of the $IKK{\beta}$ QSAR model for an external set of inhibitors, a set of ordinary differential equations and mass action kinetics were used for modeling the NF-${\kappa}B$ dynamic system. The reaction parameters were obtained from previously reported research. In the IKKb QSAR model, good cross-validated $q^2$ (0.782) and conventional $r^2$ (0.808) values demonstrated the correlation between the descriptors and each of their activities and reliably predicted the $IKK{\beta}$ activities. Using a developed simulation model of the NF-${\kappa}B$ signaling pathway, we demonstrated differences in $I{\kappa}B$ mRNA expression between normal and different inhibitory states. When the inhibition efficiency increased, inhibitor 1 (PS-1145) led to long-term oscillations. The combined computational modeling and NF-${\kappa}B$ dynamic simulations can be used to understand the inhibition mechanisms and thereby result in the design of mechanism-based inhibitors.

The Anti-inflammatory Mechanism of Xanthoangelol E is Through the Suppression of NF-${\kappa}B$/Caspase-1 Activation in LPS-stimulated Mouse Peritoneal Macrophage

  • Seoa, Jung-Ho;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.345-354
    • /
    • 2012
  • Angelica keiskei has exhibited numerous pharmacological effects including antitumor, antimetastatic, and antidiabetic effects. However, the anti-inflammatory effects and mechanisms employed by xanthoangelol E isolated from Angelica keiskei are incompletely understood. In this study, we attempted to determine the effects of Xanthoangelol E on the lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophage. The findings of this study demonstrated that xanthoangelol E inhibited the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and prostaglandin $E_2$ ($PGE_2$). Xanthoangelol E inhibited the enhanced levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) caused by LPS. Additionally, we showed that the anti-inflammatory effect of xanthoangelol E is through the regulation of the activation of nuclear factor (NF)-${\kappa}B$ and caspase-1. These results provide novel insights into the pharmacological actions of xanthoangelol E as a potential candidate for the development of new drugs to treat inflammatory diseases.

(E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone displays suppression of inflammatory responses via inhibition of Src, Syk, and NF-κB

  • Kim, Yong;Jeong, Eun Jeong;Han Lee, In-Sook;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2016
  • (E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone (MPP) is an aldol condensation product resulting from pyrrole-2-carbaldehyde and m- and p- substituted acetophenones. However, its biological activity has not yet been evaluated. Since it has been reported that some propenone-type compounds display anti-inflammatory activity, we investigated whether MPP could negatively modulate inflammatory responses. To do this, we employed lipopolysaccharide (LPS)-stimulated macrophage-like RAW264.7 cells and examined the inhibitory levels of nitric oxide (NO) production and transcriptional activation, as well as the target proteins involved in the inflammatory signaling cascade. Interestingly, MPP was found to reduce the production of NO in LPS-treated RAW264.7 cells, without causing cytotoxicity. Moreover, this compound suppressed the mRNA levels of inflammatory genes, such as inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$. Using luciferase reporter gene assays performed in HEK293 cells and immunoblotting analysis with nuclear protein fractions, we determined that MPP reduced the transcriptional activation of nuclear factor (NF)-${\kappa}B$. Furthermore, the activation of a series of upstream signals for NF-${\kappa}B$ activation, composed of Src, Syk, Akt, and $I{\kappa}B{\alpha}$, were also blocked by this compound. It was confirmed that MPP was able to suppress autophosphorylation of overexpressed Src and Syk in HEK293 cells. Therefore, these results suggest that MPP can function as an anti-inflammatory drug with NF-${\kappa}B$ inhibitory properties via the suppression of Src and Syk.

Inhibition of COX-2 gene expression via $NF-{\kappa}B$ pathway by Ichungwhan (이정환의 $NF-{\kappa}B$ 활성화 기전을 통한 COX-2 저해 기전)

  • Son Myung-yong;Jeong Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.90-98
    • /
    • 2004
  • Objectives : The present study was undertaken to investigate the molecular mechanisms of Ichungwhan for inhibition of cyclooxygenase-2 (COX-2) gene expression via suppression of NF-κB (nuclear factor κB) using aged rats. NF-κB is the most important modulator of inflammation and NF-κB regulates the gene expression of several pro-inflammatory cytokines, such as COX-2. Methods : In the experiment, we investigated the scavenging property of Ichungwhan on reactive species (RS) including nitrogen-derived species (RNS), measured by DCF-DA (2,7-dichlorodihydrofluorexcein diacetate) / DHR 123 (dihydrorhodamine 123) assay. Protein expression levels of COX-2, NF-κB, p-ERK and p-p38 were assayed by western blot. Results : We showed that Ichungwhan inhibits RS including RNS and inhibits NF-κB activation by blocking the dissociation of inhibitory IκB-β via suppression of IKK pathway. Also, Ichungwhan inhibits COX-2 gene expression. Conclusions : These findings suggest that Ichungwhan modulates COX-2 gene expression via suppression of the NF-κB pathway.

  • PDF

Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

  • Kim, Jun Ho;Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.414-420
    • /
    • 2015
  • Flavonoids, such as fisetin (3,7,3',4'-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis, kinase assays, and an overexpression strategy. Fisetin diminished the release of nitric oxide (NO) and reduced the mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 in LPS-stimulated RAW264.7 cells without displaying cytotoxicity. This compound also blocked the nuclear translocation of p65/nuclear factor (NF)-${\kappa}B$. In agreement, the upstream phosphorylation events for NF-${\kappa}B$ activation, composed of Src, Syk, and I${\kappa}B{\alpha}$, were also reduced by fisetin. The phospho-Src level, triggered by overexpression of wild-type Src, was also inhibited by fisetin. Therefore, these results strongly suggest that fisetin can be considered a bioactive immunomodulatory compound with anti-inflammatory properties through suppression of Src and Syk activities.