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The NF-κB system of transcription factors plays a crucial role in inflammatory diseases, making it an important

drug target. We combined quantitative structure activity relationships for predicting the activity of new

compounds and quantitative dynamic models for the NF-κB network with intracellular concentration models.

GFA-MLR QSAR analysis was employed to determine the optimal QSAR equation. To validate the

predictability of the IKKβ QSAR model for an external set of inhibitors, a set of ordinary differential equations

and mass action kinetics were used for modeling the NF-κB dynamic system. The reaction parameters were

obtained from previously reported research. In the IKKb QSAR model, good cross-validated q2 (0.782) and

conventional r2 (0.808) values demonstrated the correlation between the descriptors and each of their activities

and reliably predicted the IKKβ activities. Using a developed simulation model of the NF-κB signaling

pathway, we demonstrated differences in IκB mRNA expression between normal and different inhibitory

states. When the inhibition efficiency increased, inhibitor 1 (PS-1145) led to long-term oscillations. The

combined computational modeling and NF-κB dynamic simulations can be used to understand the inhibition

mechanisms and thereby result in the design of mechanism-based inhibitors. 
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Introduction

The NF-κB system of transcription factors plays a crucial

role in inflammatory diseases. As a result, the NF-κB

signaling pathway has become the most studied and best

understood system of transcriptional regulation in molecular

biology.1 When upstream stimuli activate IκB kinase (IKK),

IκB is phosphorylated and degraded via the ubiquitin-

proteosome system.2 IκB degradation leads to the activation

of NF-κB (Fig. 1), and NF-κB signal transduction regulates

various cellular responses such as inflammation, prolife-

ration, survival, tumor promotion, metastasis, angiogenesis,

cell death, and antiproliferative effects.3

IKKβ (IKK-2) is critical for NF-κB activation, and IKKβ

inhibitors are vital for treating treat inflammatory diseases.

Research has identified many IKKβ inhibitors. For example,

novel quinazoline analogues were identified from the

screening of an in-house diversity library.4 From high-

throughput screening of the Bayer compound library, a

diarylpyridine derivative was identified as a potent IKKβ

inhibitor.5 β-carbolin analogues (Fig. 2) inhibit IKKβ with

an IC50 of 150 nM and interfere with NF-κB activation6,7

The thiophenecarboxamide derivative SC-514 inhibits the

native IKK complex, recombinant human IKK-1/IKK-2

heterodimer, and IKKβ homodimer similarly. IKKβ inhibition

by SC-514 is selective, reversible, and competitive with

ATP.8 Recently, among the 60 compounds identified as

IKKβ inhibitors by a virtual screening approach, three

compounds were shown to potently inhibit the IKKβ

Figure 1. Schematic representation of the NF-κB signalling
pathway. A pathway model for NF-κB is show with the IKK
inhibitor considered.
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enzyme.9 

In this study, we suggest new computational drug discovery

approach based on the cheminformatics and systems biology

technique. When a compound will be predicted activity

against IKKβ enzyme, quantitative concentrations of

proteins in NF-κB signaling pathway will be simulated. The

NF-κB signaling pathway was modeled and simulated using

parameters obtained from a previous study by Hoffmann.7

Quantitative structure activity relationships were used to

predict the IKKβ activity of new compounds, and a

quantitative dynamic model was applied to investigate the

NF-κB network with intracellular concentration models.

Methods

QSAR Model Construction. For building a QSAR model,

IKKβ inhibitor datasets were taken from BindingDB.11,12 A

subset of 93 compounds from the complete list of 132

inhibitors was utilized as a training set for QSAR modeling.

The remaining 39 molecules (ca. 30% of the dataset)

comprised an external test set for validating the QSAR

model. Descriptors were calculated for each compound by

employing the Topomol module in PreADMET software,

which was developed by BMDRC.13 The PreADMET

program provides rapid and reliable data of drug-likeness

and ADME properties. It can also calculate constitutional,

electrostatic, physicochemical, geometric, and topological

descriptors that have been developed in response to the need

for rapid prediction of drug-likeness and ADME/toxicity

data. 

The Genetic function approximation-multiple linear re-

gression (GFA-MLR) module in Discovery Studio 2.0

(DS2.0) software14 was employed to optimize the QSAR

regression equation that correlates the biological activities of

IKKβ training inhibitors. The activity data of IKKβ

[IC50(μM)] inhibitors were converted to the logarithmic

scale [pIC50 = −log IC50(μM)-6.0] and then used for QSAR

analysis. The IKKβ QSAR model was generated with the

following optimal GFA parameters: explore linear, quadratic,

and spline equations at mating and mutation probabilities of

50%; population size = 500; number of genetic iterations =

30,000; and lack-of-fit (LOF) smoothness parameter = 1.0.

The statistical quality of the resulting equations judged by

using r2 was the square of the correlation coefficient and

represented the goodness of fit. Internal predictability of the

Figure 2. Four known inhibitors (PS-1145, SC-514, ML120B and
PHA-408) of IKKβ.

Figure 3. A kinetic model of NF-κB. The mathematical model of the IKKβ-IκB-NF-κB signaling module was described Hoffmann et al.10
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model was characterized by the cross-validated squared

correlation coefficient (q2).

Model Construction and Simulation Protocol. The

NF-κB dynamic system model was based on a set of

ordinary differential equations and mass action kinetics (Fig.

3). The reaction parameters were obtained from the work of

Hoffmann et al.10 To investigate the effects of only IKKβ

inhibitors, we did not consider the effects of IκBβ and IκBε

inhibitors. The dynamic simulation model consisted of 10

ordinary differential equations describing the time evolution

of NF-κB, IκBα, and IKKβ concentrations and NF-κB–

IκBα, IκBα–IKKβ, and NF-κB–IκBα–IKKβ molecular

complexes. The participating molecular species are assumed

to translocate between two subcellular compartments: the

cytoplasm and the nucleus, thus necessitating considerations

about transport rates in addition to binding and reaction

rates. The input into the signaling module is represented by

the concentration of the active IKK. In the NF-κB dynamic

simuation, all four rates are described explicitly. In general,

enzymes, substrates and products of individual reactions can

be shared among multiple reactions giving rise to more

complex differential equations for the corresponding con-

centrations. Thus, in order to describe changes in the con-

centration of a reaction component completely, all reactions

that this component participates in, plus possible transport,

degradation and complex formation rates must be consider-

ed. The initial condition was 0.0 µM for free cytoplasmic

IκBα and 0.1 µM for both cytoplasmic IKKβ and cyto-

plasmic NF-κB. All simulations were run using a simple

linear ordinary differential equation (ODE) method. Treat-

ment parameters of the linear ODE systems can be found in

most standard differential equations textbooks.15 

Results and Discussion

IKKβ QSAR Model. We employed GFA-MLR QSAR

analysis to determine the optimal QSAR equation. To

validate the predictability of the IKKβ QSAR model with an

external set of inhibitors, we randomly selected 39 com-

pounds and employed them as the external test set. 

Eq. (1) shows the final IKKβ QSAR model. Figure 4

shows the corresponding scatter plots of experimental versus

estimated biological activities of IKKβ inhibitors. Figure

4(a) is plotted the correlation of experimental and predicted

activity about 93 training inhibitors, and Figure 4(b) is also

plotted the correlation about 39 external test inhibitors. 

pIC50 = −2.79826 + 1.47415* Auto_Geary_02_

electronegativity + 0.179339* No_NsH 

− 0.087856* SC_06_path + 2.81932*

Auto_Geary_06_MPEOE_charge 

+ 0.024282*VS_05 (1)

F = 60.08, n = 93, r2 = 0.808, q2 = 0.782, = 0.575

r2 is the correlation coefficient of 93 training inhibitors, q2 is

the leave-one-out correlation coefficient, and  is the

predictive r2 for the 39-compound test set. Auto_Geary_02_

electronegativity is one of the autocorrelation descriptors

with electronegativity calculated by the Geary method,

which is the summation of the Pauling electronegativity

difference between adjunct atoms with Geary correlations.13

No_NsH is the number of single bonds between N atoms and

H atoms. SC_06_path is a subgraph count of order 6 (path).

Auto_Geary_06_MPEOE_charge is an autocorrelation de-

scriptor of order 6 MPEOE charges. VS_05 is valence shell

count of order 5.16 The IKKb QSAR model illustrates certain

roles played by ligand topology in the binding process.

Autocorrelation descriptors of electronegativity and MPEOE

charges implied that the polar part within inhibitors forms

hydrogen bonds with the hinge backbone of IKKβ. A

valence shell count of order 5 means that the potential active

inhibitors require a 5-membered ring for hydrophobic inter-

action. Good cross-validated q2 (0.782) and conventional r2

(0.808) values demonstrated the correlation between the

descriptors and each of their activities, indicating reliable

prediction of IKKβ activities. 

NF-κB Dynamic Simulations. We developed a simulation

model of the NF-κB signaling pathway with quantitative

information of reaction rates and the molecular concen-

trations of signaling entities. Two different inhibitors (Fig. 2)

rPRESS
2

rPRESS
2

Figure 4. Experimental versus fitted and predicted activities
calculated from the IKKβ QSAR model (Eq. 1). The fitted and
predicted activities of training (a) and test compounds (b),
respectively.
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were employed for the NF-κB simulation. Inhibitor 1, PS-

1145, inhibits IKKβ with an IC50 of 150 nM.6 The predicted

IC50 value of the IKKβ QSAR Model was 385 nM. Inhibitor

2, SC-514, also blocks IκBα phosphorylation with an IC50 of

~20 μM against IKKβ.8 The predicted IC50 value of the

IKKβ QSAR Model was 30.57 μM. We estimated the

percent inhibition of IKKβ from the IC50 values of the two

different inhibitors, and PS-1145 was assumed to induce

90% inhibition of IKKβ because it is an extremely strong

inhibitor. SC-514 showed mild inhibition, thus we assumed

50% inhibition of IKKβ as the input parameter. 

Results of the normal NF-κB simulation showed that a

high level of IκBα mRNA expression was achieved by

increasing the time scale when compared with other

inhibitor simulations. Figure 3 shows the time course of NF-

κB in the cytoplasm and IκBα mRNA expression under

normal and inhibitory states. The maximum level of IκBα

mRNA expression exceeded 0.17 μM without inhibiting

IKKβ (Fig. 5(a)); however, simulation with inhibitors

showed that the maximum level of IκBα mRNA expression

was slightly reduced (Fig. 5(b) and (c)). When the inhibition

efficiency increased, inhibitor 1, PS-1145, led to long-term

oscillations in the output (Fig. 5(c)). 

To facilitate comparisons among different inhibitors of the

same pathway, we calculated the area under the curve

(AUC) and tabulated the efficiency of inhibitors. For PS-

1145, SC-514, and complete inhibition, the differences of

AUCs of IκBα mRNA expression were −3.4%, −27.9%, and

Figure 5. Computational simulation of NF-κB signalling pathway over 100,000 seconds. Oscillation of nuclear NF-κB and IκBα mRNA
were simulated without inhibitor (a), with SC-514 (b), PS-1145 (c) and ideal 100% inhibitor.
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−57.2%, respectively, based on the simulations reported in

Table 1. The experimental percent inhibition showed similar

results, which indicated that PS-1145 elicited 20-50%

inhibition of cell line proliferation after 48-hour incubation

with PS-1145.7 For 5400 seconds simulations, we analyzed

the relative change of AUC about NF-κB in nucleus and

IκBα in cytoplasm. The AUC of NF-κB in nucleus quanti-

tatively decreased −10.4%, −22.8% and −29.1%, and AUC

of IκBα in cytoplasm increased 7.4%, 27.9% and 44.1% in

Table 2. These results qualitatively consisted with the results

that Multiple Myeloma cells were pre-treated with 0.125-40

μM PS-1145 for 90 min.7 

We examined the effect of the IKKβ inhibitor (ML120B)

on NF-κB nuclear translocation and DNA binding activity.

ML120B, inhibitor 3 in Figure 2, was employed for the NF-

κB simulation for 10 hours. ML120B, inhibits IKKβ with an

IC50 of 60 nM.17 The predicted IC50 value of the IKKβ

QSAR Model was 534.4 nM. From Dwn D. et al. work, 17

we could assumed the Hillslope of −1.7008 in Eq. (2). The

Hillslope characterizes the slope of the curve at its midpoint.

This is a typical dose-response curve with a variable slope

parameter. Where mM is a fixed inhibitor concentration.

IC50 can be fit to the data using SigmaPlot (Version 11,

Systat Software, Inc.)18

(2)

We applied the Hillsolpe and IC50 from QSAR predictions

to the dose-dependent inhibition of IKKβ inhibitors

(ML120B and PHA-408) in Figure 6(a). ML120B blocked

nuclear translocation of NF-κB with an IC50 of 2.4 μM.17 We

simulated the relative change of % Inhibtion about NF-κB in

nucleus in Figure 6(b). ML120B inhibited nuclear trans-

location of NF-κB with an IC50 of 0.95 μM by NF-κB

dynamics simulations. PHA-408 inhibits IKKβ with an IC50

of 40 nM.18 The predicted IC50 value of the IKKβ QSAR

Model was 6.9 nM. PHA-408 is a selective and potent

inhibitor than ML120B. Mbalaviele, B. et al.19 shows the

PHA-408 quantitatively inhibited the NF-κB phosphorylation

and DNA binding activity. PHA-408 blocked NF-κB phos-

phorylation with an IC50 of 30-40 nM. PHA-408 inhibited

%Inhibition = min% + 
max% min%–

1 μM/IC50( )
Hillslope

+
------------------------------------------------

Table 1. Relative Change of AUC with various inhibitions for
100,000 seconds

Inhibitor NF-κB in Nucleus IκB mRNA expression

No inhibition (0%) 100.0 100.0

 SC-514 (50%) 82.1 96.6

PS-1145 (90%) 62.6 72.1

Ideal (100%) 46.3 42.8

Table 2. Relative Change of AUC with various inhibitions for
5400 seconds

Inhibitior NF-κB in Nucleus IκBα incytosol

No inhibition (0%) 100.0 100.0

 SC-514 (50%) 89.6 107.4

PS-1145 (90%) 77.2 127.9

Ideal (100%) 71.9 144.1

Figure 6. ML120B and PHA-408 are a potent and selective
inhibitor of IKKβ. (a), dose-dependent inhibition of IKK complex,
(b) two inhibitors inhibit NF-κB cytoplasm to nuclear translocation.

Table 3. Inhibitory activity of ML120B and PHA-408 in IKKβ and
NF-κB in Nucleus

μM
IKKβ (%Inhibition)

NF-κB in Nucleus 

(%Inhibition)

ML120B PHA-408 ML120B PHA-408

0.001 0.00 3.61 0.00 0.03

0.005 - 36.64 - 14.95

0.01 - 65.27 - 36.50

0.02 - 85.94 - 53.78

0.05 0.63 96.67 0.63 68.87

0.1 1.79 98.95 1.79 73.31

0.2 4.11 99.68 4.11 74.31

0.5 21.76 99.93 21.76 74.79

0.7 28.54 99.96 28.54 74.86

1 38.51 99.99 38.51 74.91

1.5 53.29 99.99 53.29 74.93

2 55.64 99.99 55.64 74.93

5 71.97 100.00 71.97 74.96

8 73.38 100.00 73.38 74.96

10 73.78 100.00 73.78 74.96
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nuclear translocation of NF-κB with an IC50 of 11.0 nM by

NF-κB dynamics simulations. Table 3 tabulated the

inhibitory activity of ML120B and PHA-408 in IKKβ and

NF-κB in Nucleus. Both ML120B and PHA-408 completely

blocked IκB and NF-κB phosphorylation. We used NF-κB

dynamic simulation to predict and quantify nuclear trans-

location of NF-κB in the absence or presence of ML120B

and PHA-408. Our results of NF-κB dynamic simulation are

consistent with experimental data, respectively.17,19 PHA-

408 shows experimental 68.6-fold and theoretically 87.3-

fold stronger activity than ML120B in nuclear translocation

of NF-κB. From this study, we proposed that the combined

QSAR model for predicting compound activity and dynamics

simulation of the NF-κB signaling pathway will provide

new insights in inflammation therapy. 

Conclusions 

Significant progress has been made in recent years regard-

ing the NF-κB signal transduction pathway and the role of

NF-κB in inflammation, proliferation, survival, tumor pro-

motion, metastasis, angiogenesis, cell death, and antiprolife-

rative effects. IKKβ is critical for NF-κB activation, thus

IKKβ is a potential therapeutic target for NF-κB–related

diseases. In this work, we investigated a computational

modeling technique (QSAR) and dynamic simulations of the

NF-κB signaling pathway in the presence or absence of

inhibitors. The IKKb QSAR model was successfully built

and was shown to predict the efficacy of inhibitors. Dynamic

simulations of the NF-κB signaling pathway could be used

to analyze the effects of inhibitors on IκBα mRNA ex-

pression and NF-κB translocation. Therefore, we propose

that the combined computational modeling and dynamic

simulations could help to understand the inhibition mech-

anisms and thereby result in the design of mechanism-based

inhibitors.
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