• 제목/요약/키워드: $NCM(LiNiCoMnO_2)$

검색결과 26건 처리시간 0.019초

LiBOB 전해액 첨가제 도입에 따른 Li(Ni1/3Co1/3Mn1/3)O2/graphite 전지의 고온특성 (Effects of Lithium Bis(Oxalate) Borate as an Electrolyte Additive on High-Temperature Performance of Li(Ni1/3Co1/3Mn1/3)O2/Graphite Cells)

  • 정지선;이혜원;이후길;유명현;이용민
    • 전기화학회지
    • /
    • 제18권2호
    • /
    • pp.58-67
    • /
    • 2015
  • 음극 표면에 solid electrolyte interphase (SEI)를 형성하는 전해질 첨가제인 lithium bis(oxalate) borate (LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 2-(triphenylphosphoranylidene) succinic anhydride (TPSA)를 $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ (NCM)/graphite 전지에 도입하여 고온 저장 특성을 비교하였다. 각 전지를 50%의 충전상태(stage of charge, SOC)에서, 고온 저장($60^{\circ}C$, 20일) 시킨 이후의 용량 유지율을 확인한 결과, LiBOB 1 wt.%가 가장 우수한 용량 유지 특성(초기 방전용량 대비 86.7%)을 나타내었다. LiBOB 1 wt.%의 경우 고온 저장 전후의 전지 저항 증가 및 SEI 두께 변화가 가장 적었고, 이는 음극 SEI에 포함된 다량의 semi-carbonate 물질과 연관성이 높다고 판단된다. 또한, LiBOB 1 wt.%가 포함된 NCM/graphite 전지의 상온($25^{\circ}C$) 및 고온수명($60^{\circ}C$) 특성도 기준 전해액(1.15 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/ethyl methyl carbonate (EC/EMC, 3/7 by volume))보다 각각 6%와 9% 향상된 결과를 보여주었다. 따라서, LiBOB이 상온 성능을 동등 이상으로 유지하면서도 고온 특성을 개선할 수 있는 우수한 전해액 첨가제로 판단된다.

폐리튬이온전지 NCM 양극활물질로부터 말릭산을 이용한 유가금속의 침출 (Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid)

  • 손성호;김진화;김현종;김선정;이만승
    • 자원리싸이클링
    • /
    • 제23권4호
    • /
    • pp.21-29
    • /
    • 2014
  • 폐리튬이온전지 NCM($Li(Ni_xCo_yMn_z)O_2$)양극활물질 내에는 코발트(15 ~ 20%), 니켈(25 ~ 30%), Mn(10 ~ 15%) 및 리튬(5 ~ 10%) 등의 유가금속이 존재한다. 본 연구에서는 폐리튬이온전지 NCM 양극활물질로부터 친환경 유기산인 말릭산을 이용한 유가금속 침출 공정을 연구하였다. 주요공정인자는 말릭산 농도, 과산화수소 농도, 고액비, 반응온도 등이었으며, 침출액 내 금속농도는 ICP-OES(Inductively Coupled Plasma Optic Emission Spectrometer)를 통해 분석하였다. 환원제($H_2O_2$) 첨가로 인해 유가금속의 침출율이 상승하는 효과를 얻었으며, 최적공정인자는 말릭산 2 M, 과산화수소 5 vol.%, 고액비(solid/liquid ratio) 5 wt.%, 반응온도 $80^{\circ}C$이었으며, 침출율은 코발트 99.10%, 니켈 99.80%, 리튬 99.75%이었다.

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang;Youngjin Kim;Taeho Yoon;Junyoung Mun
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.320-325
    • /
    • 2023
  • In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

블랙 파우더 침출용액을 이용한 재활용 리튬이온전지의 양극 활물질 공침법에 대한 연구 (A Study on Co-precipitation of Positive Electrode Active Material for Recycled Lithium-ion Batteries Using Black Powder Leaching Solution)

  • 이재근;이재경;권성기;박계춘
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.336-344
    • /
    • 2024
  • In this study, a Ni0.9Co0.05Mn0.05(OH)2 precursor used as an anode active material using a black powder leaching solution of a recycled lithium ion battery was prepared through coprecipitation synthesis with co-precipitation time, NH4OH concentration, pH, and stirring time as variables. The characteristics of the prepared powder were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size analysis (PSA), and inductively coupled plasma optical emission spectroscopy (ICP-OES). It was confirmed that the single crystal thickness of the LiNi1-x-yCoxMnyO2 (NCM) precursor changes depending on the NH4OH concentration and reaction pH value, and thicker single crystals are formed at 2 M NH4OH compared to 1 M and at pH 10.8-11.8 compared to pH 11.8-12.0. NCM precursor particles increased with coprecipitation time, and it was confirmed that the 72 hours NCM precursor had the largest particle size. Through ICP-OES analysis, it was confirmed that the NCM precursor was synthesized with the target composition of Ni2+:Co2+:Mn2+=90:5:5.

고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구 (Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries)

  • 전용희;임수아
    • 전기화학회지
    • /
    • 제24권4호
    • /
    • pp.120-132
    • /
    • 2021
  • 기존 LiCoO2의 고전압 사용의 제약에 따른 용량적 한계와 코발트 원료의 높은 가격을 해결하기 위하여 high-Nickel에 대한 개발이 활발히 진행되고 있지만 Ni 함량의 증가에 따른 구조적 안정성의 저하에 의한 전지 특성의 저하는 상용화를 지연시키는 중요한 원인이 되고 있다. 이에 Ni-rich 삼성분계 양극소재 LiNi0.6Co0.2Mn0.2O2의 고안정성을 높이고자 전구체에 균일한 이종원소 Ti를 치환을 위해서 나노크기의 TiO2 서스펜젼 형태 소스를 사용하여 전구체 Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2를 제조하였다. Li2CO3와 혼합하고, 열처리 후 양극활물질 LiNi0.6Co0.2Mn0.2-xTixO2 합성하여 Ti 함량에 따른 물리적 특성을 비교하였다. Field Emission Scanning electron Microscope(FE-SEM) 및 Energy Dispersive Spectroscopy (EDS) mapping 분석을 통해 Ti 치환된 구형의 전구체와 입자 크기 측정을 통해 균일한 입자크기를 가지는 양극 활물질 제조를 확인하였고, 내부치밀도와 강도가 증가함을 확인 하고, X-ray Diffractometry (XRD) 구조 분석과 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 정량분석을 통해 Ti 치환된 양극활물질 제조 및 고온, 고전압에서 충·방전을 지속하더라도 효과적으로 용량이 유지됨을 확인하였다.

바인더 함량에 따른 Li(Ni0.5Co0.2Mn0.3)O2 전극의 접착력 및 전기화학 성능에 관한 연구 (Adhesive Strength and Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2Electrodes with Lean Binder Composition)

  • 노영준;변승우;유명현;이용민
    • 전기화학회지
    • /
    • 제21권3호
    • /
    • pp.47-54
    • /
    • 2018
  • 동일 전극 로딩 조건(${\sim}15mg\;cm^{-2}$)에서 면적당 용량($mAh\;cm^{-2}$)을 극대화하기 위해, 고분자 바인더의 함량을 4, 2, 1 wt%로 줄인 $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ 전극을 제조하였다. 바인더 함량이 1 wt%로 낮춘 경우, 압연 후 펀칭 과정에서 전극 코팅층이 부분적으로 박리되는 문제가 발생하여 추가 분석은 진행되지 않았다. 전극 내 바인더 함량을 4 wt%에서 2 wt%로 줄이면, 계면 접착력은 0.4846에서 $0.2627kN\;m^{-1}$로 약 46% 감소하고, 전극 코팅층의 강도도 3.847에서 2.013 MPa로 약 48%가 떨어졌다. 그러나, 두 전극을 리튬 전극과 반쪽 전지로 구성하여 전기화학적 특성을 살펴보면, 초기 방전 용량과 충방전 효율은 유사하였다. 하지만, 단기 수명 평가에서 2 wt% 바인더 전극은 수명 특성이 떨어질 뿐만 아니라, 전지를 분해하는 과정에서 전극 코팅층이 집전체에서 박리되는 현상이 관찰되었다. 반면, 4 wt% 바인더 전극은 높은 전극 로딩조건에서도 전극 코팅층과 집전체 계면이 잘 유지되고 있음이 확인되었다.

Enhancement of Electrochemical Activity of Ni-rich LiNi0.8Mn0.1Co0.1O2 by Precisely Controlled Al2O3 Nanocoatings via Atomic Layer Deposition

  • Ramasamy, Hari Vignesh;Sinha, Soumyadeep;Park, Jooyeon;Gong, Minkyung;Aravindan, Vanchiappan;Heo, Jaeyeong;Lee, Yun-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.196-205
    • /
    • 2019
  • Ni-rich layered oxides $Li(Ni_xCo_yMn_z)O_2$ (x + y + z = 1) have been extensively studied in recent times owing to their high capacity and low cost and can possibly replace $LiCoO_2$ in the near future. However, these layered oxides suffer from problems related to the capacity fading, thermal stability, and safety at high voltages. In this study, we use surface coating as a strategy to improve the thermal stability at higher voltages. The uniform and conformal $Al_2O_3$ coating on prefabricated electrodes using atomic layer deposition significantly prevented surface degradation over prolonged cycling. Initial capacity of 190, 199, 188 and $166mAh\;g^{-1}$ is obtained for pristine, 2, 5 and 10 cycles of ALD coated samples at 0.2C and maintains 145, 158, 151 and $130mAh\;g^{-1}$ for high current rate of 2C in room temperature. The two-cycle $Al_2O_3$ modified cathode retained 75% of its capacity after 500 cycles at 5C with 0.05% capacity decay per cycle, compared with 46.5% retention for a pristine electrode, at an elevated temperature. Despite the insulating nature of the $Al_2O_3$ coating, a thin layer is sufficient to improve the capacity retention at a high temperature. The $Al_2O_3$ coating can prevent the detrimental surface reactions at a high temperature. Thus, the morphology of the active material is well-maintained even after extensive cycling, whereas the bare electrode undergoes severe degradation.

리튬이차전지 양극활물질의 암모니아 침출액에서 공침법에 의한 활물질 전구체의 합성에 대한 암모니아 농도의 영향 (The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials)

  • 박상혁;구희숙;이경준;송준호;김수경;손정수;권경중
    • 자원리싸이클링
    • /
    • 제24권6호
    • /
    • pp.9-16
    • /
    • 2015
  • 폐리튬이차전지 양극재 재활용기술에 있어 침출과정을 통해 회수된 유가금속을 다시 원하는 조성의 전구체로 재합성하는 공침공정은 필수적이다. 본 연구에서는 고용량 특성의 Ni-rich 조성인 $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622) 양극재의 전구체 재합성 시 암모니아가 불순물로서 미치는 영향을 확인하는 공침실험을 수행하였다. SEM 및 EDS 분석결과 양극재 전구체 최적 합성조건(금속염 용액 농도 2 M 기준 암모니아수 농도 1 M)에서 암모니아 농도가 증가할수록 원하는 조성의 전구체가 제조되지 않음을 확인하였다. Ni의 설계함량인 60 mol%를 기준하여 암모니아수 농도 1 M ~ 4 M 조건에서 각각 100%, 98%, 95%, 87%에 해당하는 공침효율을 보여주었다. 또한 제조된 전구체 입자들의 구형화도, 균일도 및 크기분포특성 등의 형상학적 특징을 확인하였다.

복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성 (Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte)

  • 한종수;유학균;김재광
    • 전기화학회지
    • /
    • 제24권4호
    • /
    • pp.100-105
    • /
    • 2021
  • 최근 리튬이차전지의 안전성을 향상시킨 전고체 전지가 많은 관심의 대상이 되고 있으나 전도성 세라믹 또는 고체 고분자 전해질을 적용한 고체전지는 높은 계면 저항, 부반응 등과 같은 문제점을 지니고 있어 전기화학적 특성이 낮다. 기존 전고체 전지의 이러한 문제점을 해결하기 위하여 복합고체 전해질이 제안되었으며 본 연구에서는 나시콘 구조의 나노 입자 Li1.5Al0.5Ti1.5P3O12 (LATP) 전도성 세라믹, PVdF-HFP, 카보네이티 기반 액체전해질을 복합화 하여 유사고체 전해질을 제작하였다. 이 복합고체 전해질은 5.6 V의 높은 전압 안전성을 가지며 리튬이온의 탈리-착리 테스트에서 리튬 금속전극의 덴드라이트 성장 억제 효과가 있음을 보여준다. 또한 복합고체 전해질을 적용한 LiNi0.83Co0.11Mn0.06O2 (NCM811)기반 전지에서 4.8 V의 높은 충전 종지 전압에도 241.5 mAh/g의 높은 방전 용량을 나타내며 안정적인 전기화학 반응이 일어난다. NCM811 기반 전지의 90도 충전-방전 중에도 전지의 단락이나 폭발 없이 139.4 mAh/g 방전 용량을 보인다. 따라서 LATP기반 복합고체 전해질은 리튬이차전지의 안전성과 전기화학적 특성을 향상 시킬 수 있는 효과적인 방법임을 알 수 있다.

흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석 (Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge)

  • 김봉진;윤건우;송인제;류지헌
    • 전기화학회지
    • /
    • 제26권1호
    • /
    • pp.11-18
    • /
    • 2023
  • 전기자동차 시장의 급속한 성장으로 이차전지의 사용이 급증함에 따라 사용 후 전지의 폐기 및 재활용이 심각한 문제로 제기되고 있다. 사용 후 리튬이온 전지를 처리하기 위해서는 저장된 에너지를 제거하기 위하여 효과적으로 방전하는 과정이 필수적이다. 본 연구에서는 흑연과 LiNi0.6Co0.2Mn0.2O2 (NCM622)을 사용하여 코인셀 형태로 반쪽전지 및 완전지를 제조하였고, 이를 과방전할 때 발생하는 전기화학적 거동에 대하여 분석하였다. 반쪽전지를 사용하여 양극과 음극을 각각 과방전시키면, 양극에서는 먼저 전이금속 산화물이 금속으로 환원되는 전환반응을 겪게 되며, 음극에서는 SEI 피막의 분해에 이어 집전체인 Cu가 용출되는 부반응이 발생하였다. 또한, 이러한 과방전의 발생 시에는 큰 분극을 필요로 하였다. 완전지의 과방전 시에는 각각의 부반응이 진행되는 시점에 존재하는 큰 분극들로 인하여 부반응의 본격적인 발생 전에 0 V에 도달하여 방전이 종료되었다. 그러나, 사이클을 통하여 용량이 퇴화된 완전지의 경우에는 과방전거동이 변화하여 음극에서 Cu 집전체의 부식이 발생됨을 확인하였다. 따라서, 사용 후 전지는 사용 전의 전지와는 과방전 시에 다른 거동을 지니고 있으므로 이러한 점들이 고려되어야 한다.