Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.2.196

Enhancement of Electrochemical Activity of Ni-rich LiNi0.8Mn0.1Co0.1O2 by Precisely Controlled Al2O3 Nanocoatings via Atomic Layer Deposition  

Ramasamy, Hari Vignesh (Department of Advanced Chemicals and Engineering, Chonnam National University)
Sinha, Soumyadeep (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University)
Park, Jooyeon (Department of Advanced Chemicals and Engineering, Chonnam National University)
Gong, Minkyung (Department of Advanced Chemicals and Engineering, Chonnam National University)
Aravindan, Vanchiappan (Department of Chemistry, Indian Institute of Science Education and Research (IISER))
Heo, Jaeyeong (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University)
Lee, Yun-Sung (Department of Advanced Chemicals and Engineering, Chonnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.2, 2019 , pp. 196-205 More about this Journal
Abstract
Ni-rich layered oxides $Li(Ni_xCo_yMn_z)O_2$ (x + y + z = 1) have been extensively studied in recent times owing to their high capacity and low cost and can possibly replace $LiCoO_2$ in the near future. However, these layered oxides suffer from problems related to the capacity fading, thermal stability, and safety at high voltages. In this study, we use surface coating as a strategy to improve the thermal stability at higher voltages. The uniform and conformal $Al_2O_3$ coating on prefabricated electrodes using atomic layer deposition significantly prevented surface degradation over prolonged cycling. Initial capacity of 190, 199, 188 and $166mAh\;g^{-1}$ is obtained for pristine, 2, 5 and 10 cycles of ALD coated samples at 0.2C and maintains 145, 158, 151 and $130mAh\;g^{-1}$ for high current rate of 2C in room temperature. The two-cycle $Al_2O_3$ modified cathode retained 75% of its capacity after 500 cycles at 5C with 0.05% capacity decay per cycle, compared with 46.5% retention for a pristine electrode, at an elevated temperature. Despite the insulating nature of the $Al_2O_3$ coating, a thin layer is sufficient to improve the capacity retention at a high temperature. The $Al_2O_3$ coating can prevent the detrimental surface reactions at a high temperature. Thus, the morphology of the active material is well-maintained even after extensive cycling, whereas the bare electrode undergoes severe degradation.
Keywords
Lithium Ion Battery; NCM811; Atomic Layer Deposition; Cathode; Thermal Stability; Ultrathin Coating;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 W. Cho, S. M. Kim, J. H. Song, T. Yim, S. G. Woo, K. W. Lee, J. S. Kim, Y. J. Kim, J. Power Sources, 2015, 282, 45-50.   DOI
2 D. Bhuvaneswari, G. Babu, N. Kalaiselvi, Electrochimica Acta. 2013, 109, 684-693.   DOI
3 T. N. Phan, M. K. Gong, R. Thangavel, Y. S. Lee, C. H. Ko, J. Alloys Compd, 2017, 728, 1305-1314.   DOI
4 D. J. Lee, B. Scrosati, Y. K. Sun, J. Power Sources, 2011, 196, 7742-7746.   DOI
5 Z. Wang, C. Wu, L. Liu, F. Wu, L. Chen, X. Huang, J. Electrochem. Soc., 2002, 149, A466-A471.   DOI
6 H. B. Kim, B. C. Park, S. T. Myung, K. Amine, J. Prakash, Y. K. Sun, J. Power Sources, 2008, 179, 347-350.   DOI
7 Y. K. Sun, S. T. Myung, B. C. Park and H. Yashiro, J. Electrochem. Soc., 2008, 155, A705-A710.   DOI
8 S.M. George, Chem. Rev, 2010, 110, 111-131.   DOI
9 L. Wen, M. Zhou, C. Wang, Y. Mi, Y. Lei, Adv. Energy Mater, 2016, 6,1600468.   DOI
10 X. Meng, J. Mater. Chem. A, 2017, 5, 10127-10149.   DOI
11 Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, S.H. Lee, Adv. Mater, 2010, 22, 2172-2176.   DOI
12 Y.S. Jung, A.S. Cavanagh, A.C. Dillon, M.D. Groner, S.M. George, S.-H. Lee, J. Electrochem. Soc., 2010, 157, A75-A81.   DOI
13 J. W. Kim, J. J. Travis, E. Hu, K. W. Nam, S. C. Kim, C. S. Kang, J. H. Woo, X. Q. Yang, S. M. George, K. H. Oh, S. J. Cho, S. H. Lee, J. Power Sources, 2014, 254, 190-197.   DOI
14 A. Yano, S. Aoyama, M. Shikano, H. Sakaebe, K. Tatsumi and Z. Ogumi, J. Electrochem. Soc, 2015, 162, A3137-A3144.   DOI
15 W. Liu, X. Le, D. Xiong, Y. Hao, J. Li, H. Kou, B. Yan, D. Li, S. Lu, A. Koo, K. Adair, X. Sun, Nano Energy, 2018, 44, 111-120.   DOI
16 J. Kang and B. Han, ACS Appl. Mater. Interfaces, 2015, 7, 11599-11603.   DOI
17 Y. Zhao, J. Li and J. R. Dahn, Chem. Mater, 2017, 29, 5239-5248.   DOI
18 W. Lu, L. Liang, X. Sun, X. Sun, C. Wu, L. Hou, J. Sun and C. Yuan, Nanomaterials, 2017, 7, 325.   DOI
19 G. Cherkashinin, M. Motzko, N. Schulz, T. Spath and W. Jaegermann, Chem. Mater, 2015, 27, 2875-2887.   DOI
20 P. Y. Hou, L. Q. Zhang and X. P. Gao, J. Mater. Chem. A, 2014, 2, 17130-17138.   DOI
21 S. Hwang, D. H. Kim, K. Y. Chung and W. Chang, Appl. Phys. Lett, 2014, 105, 103901.   DOI
22 R. Younesi, A. S. Christiansen, R. Scipioni, D. T. Ngo, S. B. Simonsen, K. Edstrom, J. Hjelm and P. Norby, J. Electrochem. Soc., 2015, 162, A1289-A1296.   DOI
23 A. M. Kannan, A. Manthiram, Electrochemical and Solid state letters, 2002, 5(7), A167-A169.   DOI
24 S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, K. Nakura, Journal of Power Sources, 2014, 258, 210-217.   DOI
25 S. T. Myung, K. Izumi, S. Komaba, Y. K. Sun, H. Yashiro and N. Kumagai, Chem. Mater., 2005, 17, 3695-3704.   DOI
26 H. V. Ramasamy, K. Kaliyappan, R. Thangavel, V. Aravindan, K. Kang, D. U. Kim, Y. Park, X. Sun Y. S. Lee, J. Mater. Chem. A, 2017, 5, 8408.   DOI
27 H. V. Ramasamy, K. Kaliyappan, R. Thangavel, W. M. Seong, K. Kang, Z. Chen, Y. S. Lee, J. Phys. Chem. Lett. 2017, 8, 5021-5030.   DOI
28 R. Zhao, J. Liang, J. Huang, R. Zeng, J. Zhang, H. Chen, G. Shi, J. Alloy and Comp., 2017, 724, 1109-1116.   DOI
29 D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten, M. Schmidt, J. Electrochem. Soc., 2000, 147(4), 1322-1331.   DOI
30 H. Wang, Y. I. Jang, B. Huang, D. R. Sadoway, Y. M. Chiang, J. Electrochem. Soc., 1999, 146(2), 473-480.   DOI
31 L. Chen, R. E. Warburton, K. Chen, J. A. Libera, C. Johnson, Z. Yang, M. C. Hersam, J. P. Greeley, J. W. Elam, Chem., 2018, 4, 1-18.   DOI
32 J. Kim, N. Go, H. Kang, A. Tron, and J. Mun, J. Electrochem. Sci. Technol., 2017, 8(1), 53-60.   DOI
33 M. Latifatu, C. Y. Bon, K. S. Lee, L. Hamenu, Y. Il Kim, Y. J. Lee, Y. M. Lee, and J. M. Ko, J. Electrochem. Sci. Technol., 2018, 9(4), 330-338.   DOI
34 J. W. Lee and Y. J. Park, J. Electrochem. Sci. Technol., 2018, 9(3), 176-183.   DOI
35 G. W. Yoo and J. T. Son, J. Electrochem. Sci. Technol., 2016, 7(2), 179-184.   DOI
36 Y. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung and K. Amine, Nat. Mater, 2012, 11, 942-947.   DOI
37 D. Song, P. Hou, X. Wang, X. Shi and L. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 12864-12872.   DOI
38 D. Mohanty, K. Dahlberg, D. M. King, L. A. David, A. S. Sefat, D. L. Wood, C. Daniel, S. Dhar, V. Mahajan, M. Lee and F. Albano, Scientific Reports, 2016, 6, 26532.   DOI
39 D. Jang, K. Palanisamy, Y. Kim, and W.S. Yoon, J. Electrochem. Sci. Technol., 2013, 3(3), 102-107.
40 S. K. Jung, H. Gwon, J. Hong, K. Y. Park, D. H. Seo, H. Kim, J. Hyun, W. Yang and K. Kang, Adv. Energy Mater, 2014, 4, 1300787.   DOI
41 L. A. Riley, S. V. Atta, A. S. Cavanagh, Y. Yan, S. M. George, P. Liu, A. C. Dillon, S. H. Lee, J. Power Sources, 2011, 196, 3317-3324.   DOI
42 S. Wolff-Goodrich, F. Lin, I. M. Markus, D. Nordlund, H. L. Xin, M. Asta and M. M. Doeff, Phys. Chem. Chem. Phys., 2015, 17, 21778-21781.   DOI
43 K. R. Prakasha, M. Sathish, P. Bera and A. S. Prakash, ACS Omega, 2017, 2, 2308-2316.   DOI
44 J. Zhang, Z. Yang, R. Gao, L. Gu, Z. Hu and X. Liu, ACS Appl. Mater. Interfaces, 2017, 9, 29794-29803.   DOI
45 W. Zhao, G. Zheng, M. Lin, W. Zhao, D. Li, X. Guan, Y. Ji, G. F. Ortiz, Y. Yang, J. Power Sources, 2018, 380, 149-157.   DOI
46 F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D. T. Major and D. Aurbach, Adv. Energy Mater, 2018, 8, 1701682.   DOI
47 Y. Su, S. Cui, Z. Zhuo, W. Yang, X. Wang and F. Pan, ACS Appl. Mater. Interfaces, 2015, 7, 25105-25112.   DOI
48 D. Andre, S. J. Kim, P. Lamp, S. F. Lux, F. Maglia, O. Paschos and B. Stiaszny, J. Mater. Chem. A, 2015, 3, 6709-6732.   DOI
49 E. Zhecheva, R. Stoyanova, G. Tyuliev, K. Tenchev, M. Mladenov, S. Vassilev, Solid State Sci., 2003, 5, 711-720.   DOI
50 K. Liu, G. L. Yang, Y. Dong, T. Shi, L. Chen, J. of Power Sources, 2015, 281, 370-377.   DOI
51 S. M. Lee, S. H. Oh, J. P. Ahn, W. I. Cho, H. Jang, J. Power Sources, 2006, 159, 1334-1339.   DOI